
CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN

Geurts, Jozef Petrus Theodorus Maria

A Document Engineering Model and Processing Framework for Multimedia Documents / door
Jozef Petrus Theodorus Maria Geurts. -
Eindhoven: Technische Universiteit Eindhoven, 2010.
Proefschrift. - ISBN 978-90-386-2106-7
NUR 983

Subject headings: document engineering / information presentation / multimedia / hyperme-
dia / Web technology
CR Subject Classification (1998) : H.3.5., H.5.1., H.5.4, I.7.2., I.7.4, I.2.4.

SIKS Dissertation Series No. 2010-03
The research reported in this dissertation has been carried out under the auspices of SIKS, the
Dutch Research School for Information and Knowledge Systems.

Cover design: Aida Fernández Sánchez (www.summerdesign.es)
Printed by GVO drukkers & vormgevers B.V. | Ponsen & Looijen, Ede, the Netherlands.

Copyright c© 2010 by J. Geurts, Eindhoven, the Netherlands.

All rights reserved. No part of this thesis publication may be reproduced, stored in retrieval
systems, or transmitted in any form by any means, mechanical, photocopying, recording, or
otherwise, without written consent of the author.

A Document Engineering Model and Processing
Framework for Multimedia Documents

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven,

op gezag van de rector magnificus, prof.dr.ir. C.J. van Duijn,
voor een commissie aangewezen door het College voor Promoties

in het openbaar te verdedigen
op woensdag 3 februari 2010 om 16.00 uur

door

Jozef Petrus Theodorus Maria Geurts

geboren te Gouda

Dit proefschrift is goedgekeurd door de promotor:

prof.dr. L. Hardman

Copromotor:
dr. J. van Ossenbruggen

4

Contents

1 Introduction 11
1.1 Scope . 13

1.1.1 Document engineering . 14
1.1.2 Knowledge engineering . 16
1.1.3 Software engineering . 17

1.2 Research questions . 18
1.3 Contributions . 18
1.4 Outline . 18

2 Related Work 21
2.1 Document engineering . 21

2.1.1 Historic overview . 22
2.1.2 Authoring hypermedia documents 24
2.1.3 Document engineering model . 26
2.1.4 Discussion . 31

2.2 Knowledge engineering . 32
2.2.1 Issues with multimedia annotation 32
2.2.2 Multimedia vocabularies . 35
2.2.3 Semantic Web . 38
2.2.4 Discussion . 41

2.3 Software engineering . 43
2.3.1 Software architectures for document engineering 43
2.3.2 Generating multimedia . 46
2.3.3 Intelligent multimedia systems on the web 52
2.3.4 Discussion . 55

2.4 Summary . 55

3 Requirements 57
3.1 Document engineering principles . 57

3.1.1 Preliminary requirements . 58
3.1.2 Reuse of authoring and design effort 58
3.1.3 Implicit assumption: formatting satisfies constraints of delivery context 59

3.2 Stylesheet vocabulary . 60
3.2.1 Representing form conventions . 60

5

6 CONTENTS

3.2.2 Implicit assumption: default style rule adapts form while preserving
function . 62

3.2.3 Implicit assumption: formatting always succeeds 62
3.3 Structured document vocabulary . 63
3.4 Form vocabulary . 64

3.4.1 Representing form . 65
3.4.2 Form properties to detect constraint violations 67

3.5 Practical requirements . 67
3.5.1 Optimize for reuse . 67
3.5.2 Web compliant . 68

3.6 Conclusion . 69

4 Modeling 71
4.1 Modeling the document engineering paradigm 71

4.1.1 Scope of the model . 73
4.1.2 Explicit modeling of delivery context 73
4.1.3 Explicit parametrization of the style sheet 74
4.1.4 Explicit modeling of metadata . 74

4.2 Modeling the stylesheet . 75
4.2.1 Multiple default style rules . 76
4.2.2 Detecting constraint violations . 77
4.2.3 Selecting alternative style rules . 78
4.2.4 Discussion: soft constraints . 78

4.3 Modeling the structured document . 79
4.3.1 Explicit representation of media items 80
4.3.2 Representing grouping, ordering and priorities 80

4.4 Modeling the document form . 81
4.4.1 Three dimensional bounding box . 83
4.4.2 Discussion: the containment hierarchy 84

4.5 Summary and Conclusion . 85

5 Cuypers document engineering framework 87
5.1 Overview of the Cuypers framework architecture 87

5.1.1 The five steps of the Cuypers transformation chain 89
5.1.2 Embedding the Cuypers chain into a Web server 91
5.1.3 Discussion: The Cuypers versus the traditional transformation chain . 92
5.1.4 Summary . 93

5.2 Cuypers vocabularies . 93
5.2.1 Delivery context . 93
5.2.2 Presentation Structures . 94
5.2.3 Hypermedia Formatting Objects . 98
5.2.4 Style rules . 104
5.2.5 Summary . 107

5.3 The Cuypers formatter . 108
5.3.1 Formatting process . 108
5.3.2 Resolving constraints . 110
5.3.3 Labeling of constraint variables . 112

CONTENTS 7

5.3.4 Summary . 113
5.4 Conclusion . 113

6 Evaluation scenarios 115
6.1 Method . 116
6.2 ScalAR . 117

6.2.1 Aggregation . 118
6.2.2 Normalization . 119
6.2.3 Formatting . 121
6.2.4 Serialization . 125
6.2.5 Standardization . 125
6.2.6 Discussion . 126
6.2.7 Conclusion . 129

6.3 SEMINF . 129
6.3.1 Aggregation . 130
6.3.2 Normalization . 132
6.3.3 Formatting . 133
6.3.4 Serialization . 136
6.3.5 Standardization . 136
6.3.6 Discussion . 136

6.4 DISC . 138
6.4.1 Aggregation . 139
6.4.2 Normalization . 141
6.4.3 Formatting . 141
6.4.4 Serialization . 141
6.4.5 Standardization . 141
6.4.6 Discussion . 141

6.5 Performance analysis . 144
6.5.1 Automatic adaptation to the delivery context 144
6.5.2 Reuse of style . 147
6.5.3 Comparison of the three scenarios 148

6.6 Conclusion . 150

7 Conclusion 151
7.1 The research questions revisited . 151
7.2 Lessons learned . 154
7.3 Discussion and remaining challenges . 154

A Hypermedia Formatting Objects 157
A.1 Style attributes . 157
A.2 Delivery context attributes . 158

B Performance Statistics 159

Summary 169

References 170

8 CONTENTS

About the author 183

SIKS Dissertation Series 185

Preface

The morning before my fellow student Thijs and myself went for an internship interview to CWI,
we went for the same reason to one of the bigger IT consulting firms that was also located in
Amsterdam. At the time, the millennium bug and the Internet bubble were thriving well leading
to a situation in which two nearly finished IT students were a rare commodity that should be
treasured. Hence, a taxi was arranged for us to bring us from the station to our appointment. A
high-heeled woman welcomed us with coffee, cakes and an elaborate tour around the premises
specifically pointing out the (suspiciously new) recreational facilities. Although at the end of the
meeting we did not manage to discuss our project, we were impressed and happy with our newly
acquired t-shirts and coffee mugs.

Our second meeting was at CWI, which we reached after a healthy half hour walk through a
refreshing Amsterdam drizzle rain. We met with Lynda Hardman and Marcel Worring who had
a vague, but exciting idea of automatically generating multimedia presentations personalized for
each individual user. During the 4 months foreseen for our project we managed nothing but
scratch the surface of such a system. However, it turned out to be a more then fascinating project
going beyond computer science having links to many interesting areas including, web, design,
art, cinematography, discourse and artificial intelligence.

It got me hooked and, with pleasure and excitement, I returned to work on it during the
summer holiday months. And I kept coming back, first as a part-time research student (combined
with my AI studies at the university of Amsterdam) then to fulfill the final Master project and
finally it became the topic of my PhD research.

The fun and excitement has always remained and I am grateful for that in the first place to
Lynda. She managed to create a quality group with an open minded atmosphere where novel
ideas were stimulated and controversial views were welcomed. To me this has always felt as
what research should be like. Lynda, on a more personal note, I thank you for your trust, support
and patience. No amount of chocolate could satisfcorily express my gratitude, which I am sure
you won’t understand.

Secondly, I am indebted to Jacco who I appreciate most for his ability to truly follow one’s
thoughts and recognize and shape a potential idea (provided it is there). At many times when
juggling too many dependencies, the “extra hands” proved invaluable and lead the way out.
Jacco, I have enjoyed working together a lot and thank you for everything you thought me (that
excludes tasting whisky for which I feel I need some additional practice).

Thirdly, I am grateful to all colleagues at INS2 who made the group a versatile and sparkling
place to work. In particular, Frank for brightening the day through kind words, or chocolate
cakes. Lloyd for patiently answering all my SMIL, HyTime and general Web-related questions.
Stefano, Katya and Yulia shared the PhD adventure with me I’d like to thank them for their
friendship and support. Stefano, you know what they say about donkeys? I am sure one day

9

10 CONTENTS

you’ll get your priorities straightened out as well. Katya, fighting air conditioning settings,
invasion of fluffy animals and the debatable quality of Russian pop songs has been a lot of fun!
Yulia, I am still not sure whether you would be qualified best as a delayed owl, or an early early
bird. What would you like to be? Raphaël, merci for the much appreciated French support.
Thanks to Alia and Michiel for sharing an office and withstanding my bad habits. Thanks to
Željko for being a UML modeling master.

During my PhD I have had the privilege to visit two research institutes. The first was in
2002, when I joined the Maenad group of Jane Hunter at DSTC in Brisbane, Australia. Thanks
to Suzanne Little and Jane I have had heaps of fun in Brisbane! I still haven’t figured out how
Tim Tams and Vegemite both can be considered delicious, though. The second visit was in 2004
at the Garage Cinema Research group of Marc Davis. Like the first, this visit turned out to be
very valuable as well. Our weekly discussions on just about every topic were very inspiring and
thought me a lot.

Over the years, many people contributed to the Cuypers framework. Brian Bailey imple-
mented a constraint based presentation generation system, which could be considered the pre-
decessor of our Cuypers system. Frank Cornelissen implemented (almost overnight) the first
version of the Cocoon based framework, which is still in use today. Oscar Rosell made the code
comprehensible by reimplementing the formatter using the object-oriented Prolog extension,
Logtalk. Furthermore, the Cuypers system relies heavenly on a number of open source projects.
In particular I’d like to thank Jan Wielemaker (SWI-Prolog), Markus Triska (finite domain CLP
library) and Paulo Moura (Logtalk) for their software and support.

I owe gratitude to the members of my doctorate committee, in particular Jane Hunter, Bruno
Bachimont and Geert-Jan Houben. Furthermore, I’d like to thank Aida and Sigrid for making the
cover of my thesis and Geert and Jan for being my paranimfen. The Rijksmuseum in Amsterdam
kindly permitted the use of digital representations of their artworks for the Cuypers demonstra-
tors and the cover of this thesis. The research reported in this thesis was partly funded by the
NASH project (NWO projectnumber: 612.060.112).

Finally, I expect it will come to no surprise that writing this thesis was not only intellectually
challenging, but at times also emotionally demanding. For the later I owe gratitude to family and
friends whose patience, understanding and support throughout the years has been of great help.
Laurence, thanks for putting back the smile back on my face whenever it had gone.

Chapter 1

Introduction

People often associate the term multimedia with lively presentations combining film, animation,
images and music. It is typically considered entertaining, interactive and great for playing games.
It is also used to indicate advanced technology. Sometimes it is art. Although all of these
are valid qualifications, multimedia is foremost a very confusing term. For example, film is
considered multimedia, but technically so is a newspaper article with a picture, or even your
neighbor showing his holiday photographs.

In this thesis we consider multimedia in the context of an electronic document that attempts
to convey a certain message to a reader. Because of the ambiguity of the term multimedia we
define it as a document that has the following properties:

Heterogeneous media types Unlike text-based documents, a multimedia document does not
have a dominant media type but is composed of multiple media items using different
media types, such as, image, text, audio and video. The author of a multimedia document
uses media items that are, either specifically created, or (re)used from existing resources,
to represent the message she intends to convey.

Spatio-Temporal dimensions A multimedia document has, besides two spatial dimensions, a
temporal dimension. Consequently, the author of a multimedia document should, in addi-
tion to the spatial layout, synchronize media items in a meaningful way.

Figure 1.1 presents three screenshots of multimedia documents that were designed for vari-
ous screen sizes1. The first two documents (A and B) are about the painting technique “Chiaro-
scuro” in the work of “Rembrandt”. Both presentations contain a text explaining the term chiaro-
scuro, which is accompanied by a synthesized voice-over reading the text. The image of Rem-
brandt is the first of eight examples, presented in sequence, illustrating his use of chiaroscuro.
The third screenshot (C) is about “Genre paintings” in the work of “Johannes Vermeer”. Simi-
larly, to A and B, a text explainging the term “Genre” painting is accompanied by a sequence of
illustrative examples.

Authoring such multimedia documents is in multiple ways different from authoring a text-
based electronic document. First, modern text processors allow an author to abstract from type-

1A copy of these documents can be found at
http://www.cwi.nl/˜media/cuypers/generated/

11

http://www.cwi.nl/~media/cuypers/generated/

12 CHAPTER 1. INTRODUCTION

(A) “Rembrandt and Chiaroscuro”
(1024× 768 pixels)

(B) “Rembrandt and
Chiaroscuro” (640 ×
800 pixels)

(C) “Genre painting and Johannes Ver-
meer” (1024× 768 pixels)

Figure 1.1: Three examples of multimedia documents.

setting details, such as hyphenation, kerning and leading2. The word processor automatically
formats the text in such a way that it fits within the designated area, such as a page or screen.
In contrast, the author of a multimedia document carefully designs a multimedia document so
that it exactly fits the screen size the document is designed for. For example, presentation ‘A’,
shown in figure 1.1, was created for a screen with a width of 1024 pixels and a height of 768
pixels, whereas presentation ‘B’, which conveys an identical message, is specifically created for
a screen with a width of 640 pixels and a height of 800 pixels.

Secondly, modern text processors often have the ability to include predefined styles (e.g.
corporate identity), which allows an author to abstract from the styling of the document. Con-
sequently, an author does not require design expertise to ensure a consistently formatted and
aesthetically pleasing document. In contrast, modern authoring tools for multimedia documents
require an author to make both authoring and design decisions. For example, the three presen-
tations in figure 1.1 have a common style. However, since the function of each media item is
implicit for the authoring tool, an author should design all three presentations individually.

The reason that authoring and design are intertwined in the production of multimedia doc-
uments is that the spatial layout and temporal synchronization between media items is seman-
tically significant. Unlike text, where a sentence or word may be split to continue on the next
line or page, breaking the spatio-temporal relations between media items in a multimedia docu-
ment typically alters the message conveyed by the document. For example, the text explaining
chiaroscuro in figure 1.1 is top aligned and placed directly next to a painting using chiaroscuro.
The author did this intentionally to indicate a relationship between the two. When the presenta-
tion does not fit the screen, the author carefully redesigns the presentation in order to maintain
these relationships. A possible alternative would be to first present the text, since it explains the
concept of “Chiaroscuro”, and then present the example paintings. Consequently, the author of a

2Typesetting, hyphenation, kerning and leading are typographic terms that originate from the manual work
of compositors who used metal casts of letters to construct an image of a page used in a mechanical press.

1.1. SCOPE 13

Figure 1.2: Venn diagram of disciplines and associated technologies related to our research.

multimedia document should understand the impact the presentation may have on its semantics.

Although a multimedia document can be adapted to a particular context, and multiple multi-
media documents can be consistently styled, this typically requires significant human investment.
The costs involved in authoring and designing multimedia documents are therefore relatively
high compared to textual documents. As a result, the production of multimedia documents is
only viable in specific cases, which is unfortunate because multimedia documents are typically
effective to convey a particular message.

This thesis reports on our research aiming to reduce the effort involved in the authoring and
design of multimedia documents by automating part of the production process. In the subsequent
sections we elaborate on the scope of this work, we specify the investigated research questions
and summarize the main contribution. Finally, we present a brief outline of the thesis.

1.1 Scope

Research involving multimedia is inherently cross-disciplinary, having relations to various es-
tablished research domains. Figure 1.2 illustrates three areas in computer science relevant for
our research. Foremost, document engineering, which investigates systems for creating, man-
aging and maintaining electronic documents. Secondly, knowledge engineering, which studies
acquisition and formal representation of knowledge. Thirdly, software engineering, which stud-
ies the creation and maintenance of software architectures. In the next sections we elaborate on
the relation between these disciplines and our work.

14 CHAPTER 1. INTRODUCTION

Economizing on authoring effort is achieved by using
alternative formatting rules to produce multiple adapted
versions of essentially the same document.

Economizing on design effort is achieved by reusing
formatting rules to format multiple datasets into consis-
tently styled documents.

Figure 1.3: The document engineering paradigm

1.1.1 Document engineering

For many ages the term “document” referred to the physical object that carried a representation
of the message the author wanted to convey to the reader. This could be a piece of paper, a
papyrus scroll or even a clay tablet. Electronic documents are different as they do not have
an inherent physical form. Only when interpreted and rendered by appropriate software does
the document become perceivable on, for example, a computer screen or a print-out. Roger
T. Pédauque [119]3 defines an electronic document as a dataset organized in a stable structure
associated with formatting rules to allow it to be read both by its designer and readers.

Because rendering is essential to perceive an electronic document, the perceivable form of an
electronic document may be adapted by adjusting the rendering process. This notion of separat-
ing the dataset from its presentation is known in literature as the document engineering paradigm,
also known as the the multiple delivery publishing model [30, 61, 139], or separation of content
and style [28, 154]. It is used in most modern word processors, including LATEX [95], Microsoft
Word [107] and OpenOffice.org Writer [117]. In the following sections we elaborate on the
document engineering paradigm and the reduction of production costs it achieves.

Economizing authoring effort

The document engineering paradigm allows a document to be authored once and automatically
adapt it to a specific presentation environment. The left hand side of figure 1.3 illustrates adapta-
tion of the form of an electronic document by using multiple sets of formatting rules to present a
single dataset. Effectively, the author of document “A” automatically generates multiple different

3“Roger T. Pédauque” is a pseudonym used by a multi disciplinary group of French researchers.

1.1. SCOPE 15

versions of the form of the same dataset. Some practical applications of automatic adaptation
include:

Adaptation to size Adaptation is used to ensure that the presentation of a document meets the
characteristics of a specific device or medium. For example, the layout of an HTML page
is optimized to fit the size of the browser window. If the browser window is resized, the
layout automatically adapts to fit the new size.

Adaptation to the user Adaptation may be used to meet requirements and preferences of an
individual user. For example, a user with a visual impairment may use a set of formatting
rules that ensure the presentation of the document is rendered using large fonts. In addi-
tion, adaptation can be used to adapt the dataset for a particular presentation context. For
example, a teacher authors a test, for which she includes both questions and answers. Us-
ing this dataset she creates two versions, one for during the exam, excluding the answers,
and one for after the exam, including them.

Export to different file format Adaptation of electronic documents may be used for generating
multiple file formats for essentially the same document. For example, an author creates
a dataset once and uses different sets of formatting rules to generate a PDF version, a
PostScript version and an HTML version.

Economizing design effort

The document engineering paradigm allows an author to reuse styling of a document. The right
hand side of figure 1.3 shows that the same set of formatting rules can be used for multiple
datasets. Effectively, a designer creates a set of transformation rules once. The authors of docu-
ments “A”, “B” and “C” all use this set of formatting rules. Some practical application of reusing
formatting rules include:

Professional design For effectively conveying the intended message of an author, a document
should be clearly readable and attractive to perceive. Design is therefore an important
aspect of a document, which is illustrated by companies hiring professional designers for
their publications. However, in many cases, the author of a document is also the designer
(since a professional designer is often not available). Reuse of formatting rules allows a
professional designer to formulate a set of transformation rules, which can be applied to
multiple documents, effectively allowing an author to focus on the intellectual content of
the document while using the professional expertise of a designer for the presentation.

Consistency Reuse of formatting rules proves to be effective in scenarios where multiple au-
thors work on parts of the same document. For example, the editor of a collection of
scientific publications, provides all (independent) authors with the same set of formatting
rules. Since all documents will use the same consistent style multiple contributions can
relatively easily be merged into a single document.

Dynamic content Due to the separation of dataset and formatting rules, electronic documents
are not as static as traditional documents. Examples include constantly updated websites
presenting news, stock information and weather conditions. The reuse of formatting rules
allows automatic updating of the dataset, without the need for an author to redesign the
presentation of the document.

16 CHAPTER 1. INTRODUCTION

1.1.2 Knowledge engineering

The author (and designer) of a multimedia document use different types of knowledge to repre-
sent the message she intends to convey. In order to automatically adapt a document to a specific
context, while preserving the intended message, part of this knowledge should be made explicit.
In the following sections we elaborate on the specific types of knowledge used during the pro-
duction of a multimedia document.

Domain knowledge

The author of a multimedia document either creates or selects existing media items to convey the
message she intends to convey. For example, in figure 1.1 the topic of the document is Rembrandt
and his use of Chiaroscuro. The media items representing paintings are specifically selected (or
created) because they are made by Rembrandt and illustrate the use of the technique. However,
the same media item may be used in a different context, conveying a different message. For
example, the portrait of Rembrandt could just as well be used in a presentation about the apostle
Paul (in this painting Rembrandt portrays himself as the apostle Paul). Similarly, the explana-
tory text about chiaroscuro can be used in a context independently of Rembrandt. Consequently,
the context in which a media item is used influences its conveyed message. Therefore, an au-
thor should understand the domain represented by a media item in context of the multimedia
document.

Discourse knowledge

The author of a multimedia document structures the media items to represent a particular mes-
sage. This is typically referred to as discourse. The document portrayed in Figure 1.1 attempts
to show the use of chiaroscuro in the work of Rembrandt. The author deliberately presents the
text explaining chiaroscuro before the example paintings. This way, a reader views the image
while being aware of the concept chiaroscuro and (hopefully) recognizes its use in the painting.
If the example paintings were presented before the explanatory text, a reader would have more
difficulties recognizing the link4.

The media items in a multimedia document can participate in multiple discourse relation-
ships, which are conveyed through the layout and style. These can be one-to-one relationships,
such as the caption with the painting in figure 1.1, or a one-to-many relationship, such as the
sequence of example paintings and the explanatory text in figure 1.1. When one of these rela-
tionships is broken, for example, because of limited screen space, an author carefully redesigns
(parts of) the presentation to make sure the intended discourse relationships are conveyed cor-
rectly. As a result, the author of a multimedia document needs to understand the different types
of relationships between media items and how they can be communicated using layout and style.

Design knowledge

For successful communication, the author and reader need to share a system of design conven-
tions, which allows them to interpret the message expressed by the layout and style. In figure 1.1,
the author uses a large bold font for the text, centered at the top of the document, to indicate the

4We do not propose this particular example as an educational strategy, but it serves as an illustration of the
type of knowledge an author uses to structure her message.

1.1. SCOPE 17

title. Typically, the reader of the document interprets this as a title and understands that it rep-
resents the topic of the document. If the same text had been presented using a small font and a
different position a reader probably would have difficulties recognizing it as a title.

Besides the use of layout and style to convey relationships between media items, a designer
is also concerned with the constraints of the device used for presenting (e.g. the size of the
screen, whether the device can show colors and the available bandwidth). Finally, a designer is
concerned with the aesthetics of the multimedia document, which includes clearly visible fonts,
sufficiently large images and an overall aesthetically pleasing design that is appropriate for the
conveyed message. Typically, these aspects of design are not unrelated. For example, a large
font may increases clarity but also requires more spatial resources. A designer of multimedia
documents needs to understand the implications of design and invariably needs to make trade-
offs.

1.1.3 Software engineering

The Word Wide Web [22] (web) is a software framework which contains billions of electronic
documents (i.e. resources). Since the web has many different users and many different pre-
sentation contexts, adaptivity is particularly relevant in a web context. Document engineering
technology, such as HTML, CSS, XML and XSL, are actively used on the web and are partly
responsible for its success. In addition, the open architecture of the web stimulates reuse of
resources, which includes media items but also the reuse of knowledge and software compo-
nents. In the next sections we elaborate on the advantages of using web technology and the
requirements that are imposed by the web architecture.

The web as a resource

The web architecture strives for uniformity between applications. This, on the one hand, allows
reuse of resources, such as media items, which can be included in a document by referring to
their web addresses (URLs). On the other hand, uniformity allows reuse of software components,
which may result in sophisticated applications with relatively little investment. For example,
most professional websites use complex modularized technology, such as content management
systems that dynamically generate the requested page from external resources.

The web as a delivery platform

The web is based on a client-server architecture where the server is typically unaware of the
client, and the client is a priori unaware of the presented document. This independence is key
for the scalability of the web. Hence, an author writes a document once, which can potentially be
accessed by billions of clients. Moreover, a client can potentially access billions of documents
using the same browser software.

However, the uniformity of the web architecture also imposes constraints on the software
architecture of a web application, which limit the possible functionality. For example, communi-
cation on the web is stateless. This means that client and server do not have access to the history
of their transactions. If history is relevant, such as for applications using interactive forms (e.g.
on-line shops), the history needs to be communicated with each transaction.

18 CHAPTER 1. INTRODUCTION

1.2 Research questions

This research was originally motivated by failed attempts to apply document engineering tech-
niques when dealing with multimedia documents (e.g. SRM-IMMPS [27], HyTime [84]). Hence,
the benefits of reduced authoring and design costs do not apply to multimedia documents. This
discrepancy is the topic of this thesis. More precisely we research the following questions:

Research question 1 (REQUIREMENTS). What are the requirements for an extended document
engineering model and processing framework that include support for multimedia documents?

Research question 2 (MODEL). What are the properties of such an extended document engi-
neering model?

Research question 3 (FRAMEWORK). What are the properties of a software architecture that
implements the formatter of the extended document engineering model, and fulfills the require-
ments imposed by a web architecture?

1.3 Contributions

The research described in this thesis led to the following tangible results:

Contribution a (EXTENDED DOCUMENT ENGINEERING MODEL). A document engineering
model for multimedia documents, which economizes on authoring and design effort by sepa-
rating the presentation of a document from the intended message of the author, and makes the
relevant dependencies and trade-offs within and between them explicit.

Contribution b (HYPERMEDIA FORMATTING OBJECTS). A vocabulary for hypermedia for-
matting objects, analogous to formatting objects for textual documents, which describes the pre-
sentation of multimedia documents.

Contribution c (MULTIMEDIA FORMATTER). A multimedia document engineering formatter
based on the EXTENDED DOCUMENT ENGINEERING MODEL (Contribution a) and the HY-
PERMEDIA FORMATTING OBJECTS (Contribution b) vocabulary. This formatter can be used
to experiment with dependencies and trade-offs in document engineering for multimedia docu-
ments.

Contribution d (MULTIMEDIA DOCUMENT ENGINEERING FRAMEWORK). An open and reusable
software framework, which is used to automatically generate multimedia documents using the
MULTIMEDIA FORMATTER (Contribution c). It assumes that multimedia assets are annotated
and combines a stateless web architecture with a modularized knowledge architecture, using
existing web and semantic web technology.

1.4 Outline

This chapter informally introduces the questions researched in this thesis. The remaining part of
this thesis is structured as follows:

1.4. OUTLINE 19

Chapter 2 gives an overview of relevant technology and elaborates on the current state of the
art concerning document engineering, knowledge engineering and software engineering.
We will show that currently available document engineering technology is insufficient for
multimedia documents.

Chapter 3 identifies implicit assumptions in the traditional document engineering model. Be-
cause multimedia documents do not fulfill these assumptions the traditional document
engineering model does not apply. Based on the discrepancy in the traditional model we
derive requirements for an extended document engineering model that includes multime-
dia documents. Additionally, we state requirements on the software architecture, which
ensures the model is practically implementable using currently available technology.

Chapter 4 describes the extended document engineering model that fulfills the requirements
related to the model (contribution a). We use the model to clarify trade-offs that are less
apparent in the traditional model, but are inherent to multimedia document engineering.
Furthermore, the model serves as a reference for the implementation of a document engi-
neering framework and formatter that includes multimedia documents.

Chapter 5 describes our document engineering framework called Cuypers5 that implements
the extended document engineering model while satisfying the architecture requirements
imposed by the web architecture (contributions b, c and d).

Chapter 6 illustrates and evaluates our model and the Cuypers framework by describing the
implementation of three document engineering scenarios.

Chapter 7 summarizes and discuss the results described in this thesis.

5Named after the Dutch architect Pierre Cuypers (1827-1921) whose designs include the Rijksmuseum in
Amsterdam.

20 CHAPTER 1. INTRODUCTION

Chapter 2

Related Work

In chapter 1 we introduced the high-level concepts of document engineering, knowledge en-
gineering and software engineering in relation to multimedia documents. In this chapter we
elaborate on these areas and discuss related work relevant for our research.

The first section describes the basic principles of document engineering and ends with the
current state of affairs for document engineering for multimedia documents.

The second section elaborates on knowledge engineering and describes issues with describ-
ing multimedia data. Furthermore, it introduces the semantic web, which is a framework for
describing and reusing knowledge on the web.

The third section introduces software architectures for document engineering systems. Fur-
thermore, it describes related systems and architectures comparable to our own.

The fourth section summarizes the main observations, which we use to derive requirements
for an extended document engineering model, the topic of the next chapter.

2.1 Document engineering

The difference between authoring textual documents and multimedia documents has not always
been so apparent. Before the age of electronic documents, authoring a textual document, in a
way, was comparable to authoring a multimedia document today. For printing, a professional
typesetter was needed to place metal or wood casts of glyphs (i.e. letters) on a press for each
individual page. Although many copies could be printed this way, the typesetter needed to redo
the formatting from scratch for a different paper size. After the introduction of the computer for
printing documents, the glyph casts were replaced by control codes to instruct a machine to print
the glyph. Although printing became a little less time consuming, each document still needed
to be prepared for a specific paper size. And, to make things worse, the control codes used by
the printing machines typically were different between brands and even types. Consequently,
electronic documents could not be distributed in electronic form, unless the sender was sure
the receiver had access to exactly the same brand and type of printing machine for which the
electronic document was prepared.

This section introduces related work in the field of document engineering. It first gives
historical background and describes the state of the art. Based on this, we then describe the

21

22 CHAPTER 2. RELATED WORK

concepts of the document engineering model that are relevent for this thesis. Finally, we discuss
related work in the area of document engineering for multimedia documents.

2.1.1 Historic overview
In the late sixties electronic documents typically contained hardware specific control codes which
formatted a document in a certain way for particular hardware. These codes were often subject
to change when different machinery was used to render the document. William Tunnicliffe,
chairman of the Graphic Communications Association (GCA), gave a presentation in 1967 about
the separation of the intellectual content of documents from their presentation. This is what many
consider the start of the document engineering paradigm [69] and the document engineering
discipline.

Separating content from presentation (SGML, DSSSL)

In the late sixties, Charles Goldfarb and others at IBM defined the Generalized Markup Lan-
guage [69] (GML). GML described a document but abstracted over the specific control codes
used by a printing machine. In this way, an electronic document could be sent to a receiver who
used transformation software to produce a document that was processable by the receiver’s hard-
ware. Later, in 1986, this work formed the basis of the ISO standard SGML [83] which was the
predecessor of currently well known document formats such as HTML [151] and XML [29].

SGML specifies the structure of a document and, following document engineering principles,
abstracts from presentation details. A marked-up document, however, still needs to be format-
ted before it can be presented to a reader. DSSSL [85] was standardized as the language for
specifying stylesheets for SGML documents (10 years after SGML). In addition to standardizing
the language which describes the transformation, it also introduced the concept of formatting
objects.

Typesetting vocabulary (TEX, XSL-FO)

Formatting objects are device independent objects that describe the form of the document exactly,
but abstract over the rendering (i.e. the presentation of the document on a specific medium/device),
which is realized by a typesetter, such as TEX [91] and Extensible Stylesheet Language Format-
ting Objects (XSL-FO) [154].

TEX is a typesetting system developed by Donald Knuth specifically designed for technical
texts containing formulae. It was one of the first systems which allowed authors to produce
high quality documents comparable to the quality achieved by manual typesetters dealing with
typography issues such as typefaces, hyphenation, kerning, leading and the placing of figures.
Note that these algorithms are specified independent of a specific document. Furthermore, note
that the automatic formatting of a textual document is a complex process which, in addition to
ten years of work by Knuth, resulted in several PhD theses (Frank Liang, Michael Plass, John
Hobby) [92].

Similar to TEX, XSL formatting objects (XSL-FO) [154] is a vocabulary, to represent the
form of a text-based document. (XSL-FO is part of Extensible Stylesheet Language (XSL),
which we describe in the following section.) In general, the vocabulary used to represent the
document form abstracts from a proprietary file format. For example, TEX generates a DVI
file [60], which can be relatively straightforwardly transformed to document formats such as
PostScript [2] or PDF [1]. Note that in order to support multiple document formats with different

2.1. DOCUMENT ENGINEERING 23

features the formatting vocabulary is needs to be sufficient expressive to represent the combined
features of the proprietary formats.

Abstract from form (LATEX, HTML and XML)

One of the motivations of Knuth to create TEX was to allow an author to denote formulae in
an intuitive way (in contrast to writing formulae using a typewriter). Although TEX was quite
successful in that respect, the content and style were mixed. Consequently, a document designed
for a particular paper size could not easily be adapted to other formats. These were essentially
the same problems document engineering tried to solve by separating style from content. LATEX,
HTML and XML were designed to addressed these problems.

LATEX [95] is based on the philosophy that an author should focus on the intellectual con-
tent of the document and should not be bothered by formatting details. It was originally written
in 1984 by Leslie Lamport as an extension to the typesetting system TEX (LATEX is written in
the macro language of TEX.). LATEX provides an author with additional constructs for automat-
ing common tasks in document authoring such as creation of enumerated lists, indexes, cross-
references, bibliographies etc. Note that, if desired, an author can still express explicit formatting
by using TEX commands within a LATEX document.

LATEX was specifically designed for technical documents. In contrast, the HyperText Markup
Language (HTML) [122] was designed to describe documents accessible on the web. It was
defined by Tim Berners-Lee to create hypertext documents that are portable across different
platforms. Together with Cascading Style Sheets(CSS) [28], which describes rules to associate
styling information to an HTML marked-up document, it implements the document engineering
paradigm for the web.

Although HTML positively influenced the popularity of the web, it was not suited for de-
scribing information not intended for human consumption (e.g. database records). The eXtensi-
ble Markup Language (XML) [29] is a subset of SGML specially designed for the web. Although
XML was developed after the first versions of HTML, it is considered the foundation of the
web [20]. XML is used to serialize various languages including RDF(S) [150, 156], SVG [56]
and SMIL [149]. Due to the adoption of XML as a data representation language, generic tools
can be used that simplify the development process and facilitate the interchange of data between
different programs.

The Extensible Stylesheet Language (XSL) [154] is the stylesheet language for XML doc-
uments (comparable to DSSSL, the stylesheet language for SGML). It consists of two parts: 1)
XSL Transformations (XSLT) [35] which specify the transformation between XML documents
and 2) XSL-FO which defines a formatting vocabulary to represent the presentation of the doc-
ument. In contrast to CSS, which complements an input structure with formatting specification,
XSL allows an author to adapt the input structure during the transformation.

Document engineering for multimedia documents (HyTime)

Document engineering technology is currently actively used for the processing of textual doc-
uments. In contrast, for authoring multimedia documents, similar levels of abstraction do not
exist. HyTime was an attempt to provide similar functionally for documents based on temporal
flow. HyTime [84] allows an author to define relationships between objects by hypertext linking,
scheduling and alignment.

HyTime, like SGML, is not a presentation format, but a meta language to describe a class
of documents. Subsequently, HyTime needed transformation software for producing the final

24 CHAPTER 2. RELATED WORK

presentation. The level of abstraction in HyTime documents turned out to be too high. Specific
transformation software, designed for a specific class of documents, was required for producing
the final form document, making HyTime practically unusable [32] for general use.

Despite its failure to achieve the goal it was designed for, HyTime provided many valuable
insights that influenced current technology (e.g. XLink [43], XPath [36], XPointer [44]).

HyTime was designed as a meta language for describing multimedia documents. In contrast,
the Amsterdam Hypermedia model, and its derivative SMIL, focuses on a presentation format
for multimedia documents.

2.1.2 Authoring hypermedia documents
In the early nineties of the previous century, technical advances in hardware and bandwidth in-
creased the production of multimedia data. Although individual media items could be transmitted
successfully, no document format suitable for the web allowed the specification of multimedia
documents. Since existing document models and authoring paradigms were not sufficient for
multimedia documents on the web, Hardman developed the the Amsterdam Hypermedia Model
(AHM) [76].

The model we propose in chapter 4 for describing the form of a multimedia document is
based on the AHM. In addition, the SMIL output format generated by our Cuypers engine,
described in chapter 5, is based on the AHM.

Amsterdam Hypermedia Model

The AHM is based on the Dexter hypertext reference model [74] and describes a model for
authoring time-based hypermedia documents and defines four components:

Atomic An atomic component refers to the media content used in a hypermedia presentation.
Atomic components have an explicit duration and extent, style attributes relevant to the
media item and a reference to a channel which denotes the spatial position of the media
item.

Channel A channel is a conduit which defines a spatial region in the hypermedia presentation.
It is referenced by an atomic components and used to position the media item spatially. A
channel is associated with a media type (text, image, video audio etc.) has style attributes
and can be (re)used by more then one atomic component.

Composite A composite component is used to describe the spatio-temporal structure of the pre-
sentation. A composite can be temporal (in which case they have a duration) or atemporal.
It can have style attributes which are inherited by descendant components.

Link A link component is used to define relationships between components in the presentation.
This includes the specification of an anchor, a target resource and specifiers that describe
the behavior of the (activated) link, such as whether the link should be opened withing the
current presentation or in an external application.

The AHM expresses a balance for multimedia documents that on the one hand allows an
author to abstract over presentation details that do not significantly influence the presentation.
On the other hand, it is sufficiently expressive for an application to interpret the specification and
render the final form presentation corresponding to the intention of the author. This is comparable

2.1. DOCUMENT ENGINEERING 25

with the textual formatting model described previously. Note however that the AHM is optimized
for manual authoring.

SMIL

The SMIL [149] specification for multimedia documents on the web was influenced by the AHM.
Although efforts were made to make the language readable and convenient for manual authoring,
it is commonly accepted that for authoring multimedia documents an authoring tool is highly ad-
visable. GRiNS [118] (previously known as CMIFed [145]) is an authoring tool for multimedia
documents. It is, like SMIL, based on the AHM and shows multiple views of a multimedia docu-
ment, including a view of the hierarchical structure of the document, a view of the spatial layout
and a view of the temporal synchronization.

SMIL was designed with some support for adaptation. In SMIL this is expressed by means
of the SWITCH element. An author of a SMIL document uses the SWITCH element to specify
alternative presentation for part of the document. When the document is played and reaches
the SWITCH element, the player selects one of the alternatives based on a specified parameter
retrieved from the delivery context. For example, a presentation specifies a video with syn-
chronized subtitles in several languages. Based on the value for system-language, which is
defined by the delivery context, the player selects the subtitle in an appropriate language. Other
values for adaptation include system-bitrate and system-screen-size.

Although SMIL has some support for adaptation, it still has some problems. For example,
the style of a SMIL presentation is embedded in the document and can not be applied to other
multimedia documents. Furthermore, adaptation is based on document instances, which conse-
quently means that an author needs to specify all possible adaptations within the SMIL document
even if they are not used in a particular delivery context.

Roisin [24] proposes a language for formatting multimedia documents which in case of a
constraint failure gives hints to the formatter how to choose the most appropriate resolution
strategy. These hints include priorities on media items which can cause less relevant media items
to be omitted and fall-back rules in case a particular formatting strategy fails. Disadvantage of
this approach is that the server, just like for adaptation in SMIL, needs to provide resolution
strategies for a device it possibly does not know.

Scalable MSTI (Media, Spatial, Temporal and Interactive) is a multi-device authoring ap-
proach that, based on a minimal base document allows an author to specify a range of extensions
exploiting specific characteristics of a specific device [120]. The advantage of this approach is
that a document is optimally adapted to a specific device. However, the authoring of document
is a rather complex task for which dedicated tools are necessary.

Flash

Flash [100] is a proprietary format to author and present multimedia documents on the web. One
of the success features of Flash is its support for different media types, including bitmap images,
vector images, text, audio and video, which are all integrated in the format. Provided that the
client-side supports the Flash format, this guarantees that the document form can be presented as
intended by the author. Another success feature of Flash is its sophisticated scripting facilities,
which allows development of rich Internet applications.

However, Flash (implicitly) states minimal requirements on the delivery context necessary
to implement the Flash player. If these requirements are not met and, subsequently, there is no
Flash player available, the document cannot be presented. Consequently, Flash does not allow an

26 CHAPTER 2. RELATED WORK

author to abstract from the properties of the delivery context, comparable to text-based document
engineering technology. Since it does not separate authoring effort from design effort, it cannot
be considered a viable implementation of the document engineering paradigm for multimedia
documents.

Exhibit

Exhibit is a publishing framework designed for the visualization and management of structured
data collections [82]. This is of particular interest to maintainers of dynamic data repositories,
such as digital libraries, as it allows them to abstract from the visualization of the data and in-
stead reuse existing widget that are optimized to convey particular types of information. For
example, by indicating the temporal properties of a data resource, the Timeline widget automati-
cally visualizes the resources on an interactive timeline. Similar, generic visualizations widgets
are available for geographic and numerical data. In addition, Exhibit allows a user to interac-
tively sort and filter the data that is associated with one or more visualization widgets. As a
result a user can focus on a particular point of interest and reveal hidden relationships in the data
collection.

Arguably, the focus in Exhibit is on visualizing data collections in an objective manner. How-
ever, if an author wishes to exploit certain specific domain semantics, for which no widget exists
yet, a dedicated widget should be implemented. To justify the additional development effort, the
data collection having these specific domain semantics should be sufficiently large. Because the
development effort of a widget is relatively high, the threshold to develop domain specific wid-
gets is typically low. This compares to the trade-off in document engineering between, the class
of documents that can be transformed by a stylesheet, and the specificity of form conventions
represented in the stylesheet(see section 2.1.3).

2.1.3 Document engineering model
When we read a document, often without realizing, we immediately recognize part of the struc-
ture of the document by the way it is presented. This includes the division in chapters, sections
and paragraphs, which we recognize by the distinctively formatted headers. These form con-
ventions are exploited by document engineering. A form convention is a shared understanding
between an independent author and reader about how a particular function can be communicated
using a particular form.

Form conventions can be shared between a large group of people, such as the use of a large
bold font for a chapter title that almost everybody would recognize. There are, however, also
form conventions that apply to more specific domains. H2O is a symbolic convention in chem-
istry that denotes water and 11-10-1975 is used to indicate a date (11th of October in Europe,
November 10th in Northern America). These distinctively formatted form conventions are im-
mediately recognizable to a reader familiar with the domain.

In addition to existing conventions, an author can introduce conventions that apply within
a single document. For example, in chapter 3 of this thesis, we introduce a form convention
for presenting requirements. Since all requirements are formatted in a consistent way a reader
recognizes a requirement by the formatting.

The document engineering paradigm abstracts from the perceivable form of a document by
making the function and corresponding form of form conventions explicit.

The function of an electronic document represents the message an author intends to convey
to a reader. The form of a document represents the perceivable part of an electronic document

2.1. DOCUMENT ENGINEERING 27

Figure 2.1: Conceptual abstractions relevant for the document engineering paradigm.

that attempts to convey the function to reader1.
Figure 2.1 illustrates the four conceptual abstractions relevant for the document engineering

model. On the left hand side function level denotes the level of abstraction that is concerned
with the message an author intends to convey. On the right hand side, form level represents the
abstraction level concerned with represention of the form of the document. At the top, class level
denotes the level of abstraction that is concerned with the modeling of an abstract document that
defines common characteristics of multiple documents. At the bottom, instance level represents
the abstraction level that is concerned with a specific instance of a document.

The structured document, in the bottom-left quadrant, is a representation of a specific docu-
ment function. A structured document contains media items (or references to media items), such

1Semiotics is a theory of signs and symbols. It makes a distinction between signifier and signified that
compares to the distinction between form and function. In terms of semiotics, the document as a whole is
defined as a sign. The document form is the signifier and the document function the signified [129].

28 CHAPTER 2. RELATED WORK

as text and figures, that are explicitly structured. In document engineering technology, such as
LATEX [95] and HTML [123], this represents the source document as specified by the author.

The schema document, in the top-left quadrant, abstracts over specific document instances
and allows an author to specify constraints on the structure for a class of structured documents.
A document structure can be validated against the schema document to verify that it conforms
to the specifications. A validation helps to ensure the document is well structured, however, in
most cases the schema document is implicit.

The stylesheet, in the top-right quadrant, specifies the transformation from a structured doc-
ument to its perceivable document form. A stylesheet is defined independently of a structured
document, and is responsible for the advantages of document engineering: automatic adaptation
and reuse of style (see chapter 1). In the remainder of this thesis we refer to the designer of the
stylesheet to denote the creator of the stylesheet who makes decisions concerning the document
form. We refer to the author of the structured document to denote the creator of the structured
document who makes decisions concerning the document function. Note that in practice, how-
ever, there is often not such a clear cut separation between the tasks of an author and the task of
a designer. Finally, the reader of the document form denotes the perceiver, who interprets the
document form.

A stylesheet applies to a class of documents. The size of the class is constrained by the
specificity of the encoded form conventions. If a stylesheet encodes generic form conventions,
such as title, the stylesheet applies to a large class of documents. If however the stylesheet
encodes specific domain dependent form conventions, the class of documents becomes smaller.
Subsequently, the designer of a stylesheet needs to find a balance between the document function
that is explicitly represented in a structured document and the document function that remains
implicit.

Although a stylesheet defines the formatting of a class of documents, an author might want
to define exceptions that apply to a specific document. Subsequently, a stylesheet can specify
formatting on both class level as well as instance level, indicated in figure 2.1.

The document form, in the bottom-right quadrant, represents the perceivable document that
conveys the structured document as specified by the stylesheet.

A form convention is represented by a style rule as part of a stylesheet. A style rule specifies
a mapping between a functional construct and a form construct on class level or instance level.

A functional construct makes part of the structured document explicit so that a style rule can
select it and transform it to its corresponding form construct

Subsequently, a form construct represents part of the document form that is produced by a
style rule.

A formatter is a computer application which, independent of a particular document, applies
formatting rules to a structured document and produces the form of a document. The formatting
rules are described in a stylesheet. If the stylesheet conforms to a schema document and the
schema document validates the structured document, then the stylesheet can be used to transform
the structured document to document form.

For the formatter a structured document is a tree structured list of functional constructs. The
document form is a tree structured list of form constructs. Abstracting from functional constructs
and form constructs, the transformation, concerns an input tree that is transformed to an output
tree. Starting at the root node, which becomes the active node, the formatter finds all style
rules, of which the selector matches with the active node. From these matching style rules, the
formatter selects one, according to a specific resolution strategy, and executes it. The result,
which is a tree fragment, becomes the top of the output tree. Typically, the descriptor of the

2.1. DOCUMENT ENGINEERING 29

Figure 2.2: Transformation chain consiting of three transformation steps.

matching style rule also contains instructions that specify the continuation of the transformation
process for the child nodes of the active node. The process continues recursively until there are
no more nodes in the input tree to transform.

Defining the transformation chain

In section 1.1.1 we defined an electronic document as a structured dataset that required format-
ting rules to become perceivable. This is subtly different from separating function from form,
since the dataset can be an encoding of the form. A facsimile format such as PDF is a structured
dataset. However, it represents the form of a document, while the function remains implicit.
In practice, the document engineering paradigm (transforming function to form) is often imple-
mented by several sequential transformations where the output of the previous transformation is
used as input for the next. This is referred to as the transformation chain, an individual trans-
formation in the tranformattion is refered to as a transformation step. Although there is no max-
imum in the number of transformation steps in a transformation chain, most modern document
engineering applications (e.g. LATEX, HTML) use a three stage document production process that
consists of two (automatic) transformations2. These three stages, illustrated in figure 2.2, are:
authoring, formatting and rendering [61].

Authoring Document function in figure 2.2 refers to the intended message an author wants to
convey. During the authoring phase an author attempts to materialize this message, while
abstracting from the form used to convey this message. For example, an author indicates
the intended function of a text, such as emphasis, without specifying the formatting used to
convey emphasis in the document form. The result of the authoring phase is an explicitly
structured dataset, which is often referred to as the structured document.

Formatting The form of a document is determined during the formatting phase. Based on
the explicit function in the structured document, the form of a document is adapted to a
particular delivery context. Effectively, perceivable properties are assigned to the explicit
function described in the structured document.

The text that is designated as “emphasis” may, for example, be formatted using an italic
font, which is traditionally used to convey emphasis. Alternatively, for a differently styled

2One can interpret the authoring of a structured document as a transformation from the document function
as it resided in the mind of the author to the structured document.

30 CHAPTER 2. RELATED WORK

Screenshot of a Firefox browser showing the
Wikipedia entry for “Johannes Vermeer”.

Screenshot of RealPlayer showing a multi-
media document about “Johannes Vermeer”
and “genre painting”.

Figure 2.3: The rendered document form as perceived by the reader consists of both interface
artefacts of the application rendering the document form, and the document form conveying the
document function.

document, emphasis may be communicated using a bold font. The result of this phase is
a specification of the document form.

Rendering The rendering phase is typically a straight-forward transformation from document
form to the rendering of the document form that does not require design decisions that
could alter the perceived document function. This can be a paper document, in which case
the rendering involves sending formatting instructions to the printer. If it is a computer
screen, rendering involves sending pixels to the screen. The result of this phase is the
perceivable manifestation of the document form to a reader.

Defining document form

Figure 2.3 presents two screenshots that illustrate the document form. On the left, a text-based
document about “Johannes Vermeer” is shown using the Firefox browser [40], on the right,
a multimedia document about “Johannes Vermeer” and “genre paintings” is presented using
RealPlayer [124].

The document form includes interface components, such as window borders, the title bar and
interaction widgets that are perceivable, yet they do not convey the document function an author
intends to convey. The interface of an application is often beyond the control of the author and
therefore does not play an active role in the document engineering paradigm.

Roger T. Pédauque makes a comparable distinction for non-electronic documents. He defines

2.1. DOCUMENT ENGINEERING 31

a non-electronic document as the inscription (e.g. text, figures) and the medium (e.g. paper),
which “carries” the inscription [119].

Although medium and inscription are not defined for electronic form, the constraints im-
posed by the delivery context can be compared to the constraints imposed by the medium. For
example, they both have a notion of available real estate for the form (e.g. paper size, screen
size). Although we are mostly concerned with electronic documents, the notion of medium and
inscription is a useful metaphor for this type of document as well. For our purposes we therefore
extend the definitions of medium and inscription to include electronic documents.

The medium is the part of document form that is independent of the document function and
defined by the delivery context. The inscription is the part of electronic form that is dependent
on the document function3.

Note that according to this distinction, the navigational arrows below the Vermeer painting
in figure 2.3 are part of the inscription. In contrast, the arrows indicating the start and end of the
document are part of the interface and therefore part of the medium.

The inscription of a document traditionally includes handwritten or printed text and images.
For electronic documents, the inscription may, in addition to text and images, consist of temporal
media such as audio and video. A media item is a unit of data, identified and retrieved as one
from a repository, which, using appropriate software, can be represented in a perceivable form
(adopted from [76]). This definition includes spatial-temporal media items such as audio-clips,
images and videos, as well as textual media items. In a textual document media items are atomic
text fragments such as a paragraph or the title. Note that we are referring to the text only, thus
without styling.

In addition to media items, the inscription of a document form consists of layout, style and
optionally hyperlinks (based on the AHM [76]). We define the layout of an electronic document
to define the spatial regions and/or temporal regions that are part of the inscription. This includes
borders, margins, paddings (and if applicable, pauses and synchronization). The style of an
electronic document defines perceivable properties of the document that can be adapted. This
includes fonts, colors, alignment and transition effects. Style is used to optimize perception and
improve the aesthetic value of a document. Note that some of these properties, such as font type
or font size influence the layout. The hyperlinks of an electronic document define perceivable
elements within the inscription that define explicit references with associated behavior to (parts
of) one or more electronic documents.

2.1.4 Discussion

The advantages of document engineering, adaptation to the delivery context and reuse of style
apply to both textual documents as well as multimedia documents. The document engineering
algorithms developed for textual documents, however, cannot be applied to multimedia docu-
ments. The problems HyTime revealed concerning the tight relation of content and style in
time-based media is still a topic of research today. In many ways, our own research addresses
some of the problems initially raised by the HyTime community.

3We are aware of the inherent differences between electronic documents and non electronic documents and
the problematic implications this has for the concepts of medium and inscription. For example, the imple-
menters of the Firefox browser have decided to display the document title “Johannes Vermeer” in the titlebar,
this is not a choice of the author. The definition of the <title> element in HTML [151] states that the title
should be perceivable. Consequently, the titlebar is part of the medium but dependent on the function of the
document.

32 CHAPTER 2. RELATED WORK

Van Ossenbruggen [139] describes the overlap between electronic publishing and time-based
hypermedia models. Although these share some technology, in general the developed models are
not compatible. Van Ossenbruggen states two incompatibilities that also occur in our own work.

First, the document engineering paradigm advocates a source document that makes no ex-
plicit statements about the presentation of the document. The source document thus contains the
intellectual content of the document but abstracts over its presentation. However, the intellectual
content of a time-based hypermedia document is often established by combinations of media
items with specific spatio-temporal relations between them. In this case the presentation is part
of the intellectual content.

Second, structured document models for text-based documents are all based on text-flow.
Once a line of text exceeds the margin of the page it is broken-up and continues on the beginning
of the next line. Similarly, at the end of a page, once a line does not fit the current page it is
automatically moved to the beginning of the next page, or a scroll-bar is added. Multimedia
documents use temporal flow, which, in general, cannot be broken at arbitrary places as it can
destroy the coherence of the document.

2.2 Knowledge engineering

When a multimedia item is perceived by a human perceiver she attaches particular semantics to
the collection of bits that encode the media item. Although the media item encodes semantics it
is typically hard to access for a machine. Nevertheless, some structures can be derived (partly)
automatically. For example, for text, algorithms exist that can detect word bases and the language
used. This can be used for automatic hyphenation in an electronic document [92]. For video,
algorithms exist that detect shot boundaries and to some extent scene boundaries automatically,
which facilitate navigation through a video [132]. Furthermore, image analysis algorithms allow
retrieval of images based on visual features [4].

There is, however, a trade-off between the size of the domain these algorithms can be applied
to and the detail of the automatically detected semantics. This trade-off is often referred to as the
semantic gap [131].

For applications that require knowledge about the media that cannot be automatically de-
tected, additional descriptions (i.e. metadata) are necessary.

Symbolic AI and knowledge engineering (or classic AI) is a branch of artificial intelligence
that is concerned with representing (human) knowledge and semantics in a declarative form
suitable for further processing by intelligent applications [45].

In the remainder of this section we first focus on the inherent problems of multimedia anno-
tation. Part of these problems are addressed by the formalized vocabularies that are designed to
encode particular types of knowledge that are relevant for our domain. Finally, we describe the
semantic web, which is a framework designed for combining and reusing knowledge in a web
context.

2.2.1 Issues with multimedia annotation

Although for some applications the requirement on metadata for media items is inevitable, there
are some serious issues with describing media items. These include issues imposed by the person
annotating the object, the object itself and the vocabulary used to annotate the object.

2.2. KNOWLEDGE ENGINEERING 33

The “Metadata Twist”

Haase [73] argues for the importance of high quality metadata. He states metadata can often not
be generated automatically and needs to be authored manually for a specific task. This leads to
what Haase calls the Metadata Twist, “While the economic significance of metadata increases
with the size of the available content, the average economic value of the content must, at the
same time, decrease with the amount of available content.”

Van Ossenbruggen et al. [144] mention the following problems with metadata for multimedia
documents.

Costs High quality metadata typically is expensive as a human author is needed to provide them.
Although some automatic annotation is possible using feature extraction algorithms, most
applications require high-level annotations for which human labor still is needed.

Subjectivity Annotations are typically highly subjective. Human annotators focus on different
things and therefore interpret a media item differently. Furthermore, an annotator typically
imagines a context for which the media item can be used, which influences the perspective
of the annotation.

Restrictivity Formalized metadata schemata may partially limit the subjectivity of the annota-
tion, they also limit the expressiveness of a human annotator. Subsequently, an annotator
might not be able to express subtleties she finds important.

Longevity Annotation schema that can be used for current usage as well as usage in the long
run are hard to define. This is because the context of the annotator and intended use of the
media items typically change over time.

Standardization Annotations need to be made accessible to end-users. Standards are needed to
ensure that the intended meaning is communicated.

Privacy Metadata might include personal or security sensitive information that should not be
disclosed to other parties.

Granularity The scope of annotations might be different as some address the whole media item,
while others refer to part of the media item. For example, the title of a film relates to the
whole media item, while the location of action might change during the film.

In addition to these “general” issues concerning metadata, the association between the meta-
data and the digital artefact is not always made explicit [71]. In the next section we elaborate on
the possible mismatches between a media item and its metadata.

Relation between topic, media asset and annotations

In multimedia, the digital artefact itself is often also “about” another (often non-digital) artefact.
This results in a complex, at least four-way relationship between (1) the concept, (2) its annota-
tion, (3) the digital media item and (4), its annotation. Figure 2.4 gives an example, which shows
three distinguishable conceptual levels of media item and its annotation. On the upper left, we
see the primary topic Saskia. The middle left image represents the painting, as it is hanging
on the wall in the museum. On the lower left, there is a series of digital media items that are
directly related to the painting: digital images of the painting in different sizes and resolutions,

34 CHAPTER 2. RELATED WORK

Figure 2.4: Media item and annotation record

X-ray images of the same painting, etc. The right half represents the metadata4. At the top, the
annotations that describe Saskia might include her birth year, the place she lived, and that she
was the wife of Rembrandt. In the middle, annotations about the painting might include the date
of creation, the artist who created it, the physical dimensions and the room in the Rijksmuseum
where it is currently hanging. Finally, the annotations about the digital media item might in-
clude the media type of the media item, the width and height in pixels and possibly copyright
notifications.

All multimedia applications need to deal with the lower part of this figure to be able to show
the media items (bottom left) and to process the different media types (bottom right). Most of
them also need access to information about the topic of discussion, for example to make decisions
about the relevancy of the media items. Unfortunately, the distinction between the different
conceptual levels is not always made, and, if it is, the relationship between the conceptual levels
has not been standardized or is even not made explicit at all [75].

These problems fall into three categories. First, the relationships need to be made explicit
between real world objects and digital media assets representing them, and between metadata
expressing concepts in the domain and metadata about the media assets. Second, multimedia
applications require a distinction between content-level annotations and (technical) descriptions
of the media asset. Third, multimedia applications often require metadata from a variety of
different vocabularies [13, 67].

4Note that in some sense, the media items can also be considered metadata about the painting. Here, we
stick with the more conventional definition of metadata.

2.2. KNOWLEDGE ENGINEERING 35

2.2.2 Multimedia vocabularies
Controlled vocabularies are designed with a particular purpose in mind. Typically they are es-
tablished within a community to achieve a level of consistency or agreement on the terms used
to annotate. Depending on the task the vocabulary was designed for it has a particular level of
formalization. Dublin Core [46], for example, provides a set of basic relationships that are typ-
ical within the digital libraries domain. However, since it specifies very few restrictions in the
standard, the values allocated to a relationship are often ambiguous and therefore hard to process
automatically by a machine. In contrast, CC/PP [152] is a vocabulary describing device profiles
that are processable by a machine. Subsequently, the syntax and semantics are specified in great
detail.

In the remainder of this section we present a number of vocabularies that are used in our
work. Other relevant vocabularies, such as MPEG-21 [87], Visual Resources Association (VRA) [148],
The Art and Architecture Thesaurus (AAT) [64], Iconclass [137], Media Streams [41] and
PREMO [47] we do not describe here in detail.

MPEG-7

MPEG-7 [88] provides a standardized way to describe audiovisual data for searching, browsing
and filtering in order to be used by third party applications. MPEG-7 specifically focuses on
machine readable media descriptions rather then human accessible descriptions. It provides a
set of audiovisual descriptors and description schemata describing the structure of a metadata
element, which a user can use to describe audiovisual material. The standard is divided in eight
parts, each focusing on different aspects of audiovisual content (adopted from [111, 112, 144]).

Systems specifies the binary encoding of MPEG-7 descriptions for efficient transport. These
can be delivered independently, or included with the media they describe.

The Description Definition Language (DLL) specifies the syntax of the language for describ-
ing MPEG-7 descriptors.

Visual specifies descriptors that cover basic features of visual data, such as, colors, texture,
shapes and motions.

Audio specifies a set of descriptors covering audio features, such as, spectral, parametric and
temporal features.

Multimedia Description Schemes (MDS) specifies the generic descriptors for multimedia con-
tent (including visual and audio).

Reference Software specification of reference software that implements the standard, which
can be used to validate compliant MPEG-7 implementations.

Conformance specifies guidelines and procedures for testing conformance of the standard.

Extraction and use specifies informative material on the use of descriptors.

MPEG-7 attempts to keep the application domain as broad as possible. This results in an
elaborate standard in which a number of fields ranging from low level encoding scheme descrip-
tors to high-level content descriptors are merged. Because there is no explicitly assumed use

36 CHAPTER 2. RELATED WORK

case, MPEG-7 supports multiple ways of structuring annotations. In addition, domain depen-
dent descriptors can be added if the default descriptors do not provide enough detail.

MPEG-7 is one of the few attempts to standardize multimedia metadata. Although we did
not substantially use the MPEG-7 standard in our work, for reasons we will discuss later5, it did
serve as a reference and inspiration.

Dublin Core

The Dublin Core Element Set (DC) [46] is an ISO standard for cross-domain information re-
source description. There are no fundamental restrictions to the types of resources to which
Dublin Core metadata can be assigned. Dublin Core is a commonly used annotation scheme
across different domains. It is small set of relations, identified by domain experts in the field of
digital libraries.

Dublin Core currently identifies 15 relations, including Title, Creator, Subject,
Description and Date. All of the relations are explicitly optional and there are no explicit
constraints on the values of the relations. There are, however, suggested controlled vocabularies
for some of the Dublin Core elements such as Date. Finally, Dublin Core does not make explicit
statements on the syntax and language for denoting Dublin Core annotations. There are, how-
ever, recommendations about encoding Dublin Core annotations in XML, RDF and XHTML.

Some of the knowledge resources we use in our work use a subset of the Dublin Core schema
as part of their annotation schema. Furthermore, in part of our work we use the Dublin Core
schema for inferring additional relationships between media items (see chapter 5).

MIME

MIME [59] was initially designed to allow mail tools to identify the media type of email content,
but is now also used by web browsers and many other multimedia applications to identify the
type of a media item.

MIME specifies a a MIME-type which consists of a type and subtype. For example,
image/JPEG, has type image and subtype JPEG, referring to an image which is JPEG encoded.

We use the MIME standard to infer the type of a media item and what properties are defined
for it. For example, every image has a width and a height, every audio file has a duration and
every text has a length. Furthermore, we map the MIME type to the basic modalities where these
are not explicitly defined for a media item6.

Cascading Style Sheets

Cascading Style Sheets (CSS) [28] is a style sheet language that allows authors and users to attach
style (e.g. fonts, spacing, and aural cues) to structured documents (e.g. HTML documents and
XML applications).

A style sheet rule consists of two parts, a selector that identifies the part of the document the
rule applies to, and a list of property-value pairs defining the formatting of the selected part. For
example, H1:{ font-size:18pt} denotes that headers(H1) use a font-size of 18pt.

Although not specifically meant for multimedia we use CSS (and XSL Formatting Objects)
as inspiration for our hypermedia formatting objects (see chapter 5).

5In [98] we use MPEG-7 relations for mapping semantics to spatio-temporal relations.
6Modality refers here to the term used in semiotics, which denotes the way in which information is encoded

for the presentation to humans [162].

2.2. KNOWLEDGE ENGINEERING 37

Composite Capabilities/Preference Profiles

Composite Capabilities/Preference Profile (CC/PP) [152]) describes the structure and vocabulary
of profiles for describing device capabilities and user preferences. It is mainly used for content
adaptation in mobile environments.

In our work we use part of the CC/PP vocabulary for describing the delivery context.

Modality Theory

Modality Theory [23] aims at providing a taxonomy of output modalities that are used for cre-
ating multi-modal output in human computer interfaces. Modality theory is used to combine
media assets in an effective way for the user. For example, an audio file that contains music and
an audio file that contains speech may be played in parallel, whereas two audio files that contain
music are better presented in sequence.

Based on modality knowledge in chapter 5 we define rules to dynamically combine media
items. We use the following modalities to describe the properties of a media item:

Graphic (gr) modalities are perceived by the visual input sense of a user. Examples of graphic
modalities include images, text and hieroglyphs.

Acoustic (ac) modalities are perceived by the hearing sense of a user. Examples include sound,
music and voices.

Haptic (ha) modalities are perceived by the touch sense of a user.

Linguistic (li) modalities are based on existing syntactic-semantic-pragmatic systems of mean-
ing. They can represent or express in principle anything, but require focus and conse-
quently omit detail. For example the string “My neighbor” denotes a particular person but
omits (irrelevant) details on what he looks like.

Analogue (an) modalities (sometimes called iconic) are complementary to linguistic modali-
ties. They have the property of being specific but lack abstract focus. For example a
picture of a man will precisely show what he looks like. However, stating that this man is
my neighbor is hard to express using analogue modalities.

Non-Arbitrary (na) modalities rely on an already existing system of meaning and represen-
tation. Examples include natural language or mathematical notions which do not need
further explanation because their semantics are shared between the communicating par-
ties.

Arbitrary (ar) modalities must be accompanied with appropriate representational conventions
in order to understand the representation. Some arbitrary representations become non-
arbitrary as they acquire common use.

Static (st) modalities may be decoded by a user at any time and as long as desired. For example
a photograph or statue.

Dynamic (dy) representations do not allow the user freedom of inspection but have a prescribed
way of being communicated to the user, e.g., video.

38 CHAPTER 2. RELATED WORK

2.2.3 Semantic Web

Most controlled vocabularies (including most of those described above) define their own syntax
and semantics, preventing reuse of the vocabulary. DAML+OIL [138] was developed in the
beginning of this century by the symbolic branch of the AI community, for providing uniform
syntax and semantics for reuse of knowledge descriptions and tools processing this knowledge.
Although DAML+OIL served as a generic knowledge description language it was, outside AI
research labs, not often used.

In order to stimulate the exchange of metadata, the Open Archives Initiative (OAI) [94] de-
fined an interoperability framework, the Open Archives Metadata Harvesting Protocol [38], to
facilitate the sharing of metadata. Using this protocol, data providers are able to make meta-
data about their collections available for harvesting through an HTTP-based protocol. Service
providers then use this metadata to create value added services. To facilitate interoperability,
data providers are required to supply metadata which complies to a common schema, the un-
qualified Dublin Core Metadata Element Set [46]. Additional schemas are also allowed and are
distinguished through the use of a metadata prefix. In addition, the Open Archives Initiative
Object Reuse and Exchange (OAI-ORE) defines a vocabulary to describe aggregations of Web
resources that may combine multiple media types [39]. This information may be used for au-
thoring, deposit, exchange, visualization, reuse, and preservation. We used the OAI protocol to
harvest metadata for the SEMINF use case described in chapter 5.

On a larger scale, the Semantic Web initiative aims to make data on the web accessible to
machines. In this way, both people and machines can interchange information on the web [22].
Furthermore, relationships between data resources can be made, similar to hyperlinking mech-
anism commonly used on the “tradional” Web [21]. This way, available data may be reused
(possibly for purposes it was not primarily designed for) and combined with other data to create
“new” information.

Although the web for people is already a success, the web for machines is relatively young.
In the remainder of this section we first explain the basic vocabularies used to describe knowledge
on the semantic web. Although these vocabularies are suited for machine processing they are not
very well suited to be interpreted by humans. Consequently, a sub area of the semantic web
initiative intends to access and present this information to humans.

RDF, RDF(S) and OWL

The Resource Description Framework (RDF) [150] is a data model, standardized by the World
Wide Web Consortium (W3C) (http://www.w3c.org). RDF is a language to describe a
graph of statements. The semantics of RDF are formally defined in the standard [78]. In practice,
however, they are often not sufficient for modeling a domain.

RDF Schema (RDFS) [156] adds additional formal semantics to a number of RDF state-
ments. It defines the concepts of a class and instance that allow conceptual modeling of a do-
main.

The semantics supported by RDF Schema, however, are relatively simple. For more complex
domain modeling more sophisticated semantics are needed, which are provided by the W3C
OWL recommendation [157].

Figure 2.5 illustrates the modeling of a domain of artists and the artefacts they create us-
ing RDF(S). The interrupted line separates Class descriptions from Instance descriptions. Class
descriptions model the domain conceptually by defining relations between concepts. For ex-

http://www.w3c.org

2.2. KNOWLEDGE ENGINEERING 39

Figure 2.5: Graph representation of a RDF(S) graph modeling artists who create artefacts.
(Graphical representation of part of the domain model used for the Topia project [126].)

ample, the concept topia:Artist7 is a special type of topia:Person, as specified by the
rdfs:subClassOf relationship. Informally explained, the model states that persons create ob-
jects, and artefacts are special types of objects. Since artists are persons and artefacts are objects
we can infer that artists can create artefacts. This is illustrated by the Instance descriptions,
specified below the interrupted line. That the artist “Rembrandt” created the artefact “The Stone
Bridge” is a valid statement in the model.

An RDF graph (which may include RDF(S) and OWL) can be encoded as an XML docu-
ment, which can be stored on a server and downloaded by a client. Third party tools are available
to process the knowledge encoded in the RDF file. We used Protégé8, which is an ontology edi-
tor, to define alignments between ontologies we used. Furthermore we used SWI-Prolog9, which
is a Prolog implementation that allows reasoning with knowledge encoded in RDF, RDF(S) and

7On the (semantic) web an entity (or in web terminology a resource) is denoted by a Universal Resource
Identifier (URI) [19]. A URI can refer to a document, such as http://www.w3.org/Addressing/,
which explains addressing resources on the web. It can, however, also be used to denote an abstract entity,
such as topia:Artist. In this case, the prefix (or namespace) topia is a short notation to denote http:
//www.telin.nl/rdf/topia#. The resource topia:Artist thus actually denotes http://www.
telin.nl/rdf/topia#Artist.

8http://protege.stanford.edu/
9http://www.swi-prolog.org/

http://www.w3.org/Addressing/
http://www.telin.nl/rdf/topia#
http://www.telin.nl/rdf/topia#
http://www.telin.nl/rdf/topia#Artist
http://www.telin.nl/rdf/topia#Artist
http://protege.stanford.edu/
http://www.swi-prolog.org/

40 CHAPTER 2. RELATED WORK

partly OWL. Finally, we use Sesame10, which is an database application for knowledge encoded
in RDF and RDF(S).

Although the semantic web encodes explicit knowledge that is accessible and processable
by a machine, this information is, in general, hard to interpret by humans. In the next section we
elaborate on systems developed to present this knowledge in a format better suited for humans.

Presenting the semantic web

The semantic web aims at making resources accessible for machines. The intention is to provide
more sophisticated technology for processing information. However, the graph structure and
formal semantics are not easily accessible to human users. Therefore, in addition to encoding
knowledge to be accessible for machines, the reverse, presenting knowledge to a human user is
also necessary [63, 142].

The data structure of an RDF repository represents a directed graph. Subsequently, an RDF
repository can be visualized by a graph, as illustrated in figure 2.5. The W3C RDF validator
service [121] provides the option to automatically generate a visual graph of an arbitrary RDF
file. This type of visualization works reasonably well for small graphs. To visualize larger graphs
more customizable visualization tools are required [58].

Besides visualizing the RDF graph, which is arguably the most complete, there are other
visualization tools that attempt to facilitate access to the information contained within the graph:

Noadster [128] generates hypermedia presentations in a domain-independent way, using clus-
tering techniques. Figure 2.6 shows a presentation generated by Noadster about “Rembrandt”.
Noadster presents a structure view (left side of Figure 2.6) which represents a higher-level struc-
tural view based on the clusters found, and local view (right side in Figure 2.6) which presents
information about an individual resource.

/facet [79], illustrated in figure 2.7 supports browsing through the graph structure by means of
dynamically selecting relevant properties (facets). Additionally, the interface allows the inclu-
sion of facet-specific display options that go beyond the hierarchical navigation that characterizes
current facet browsing. Foremost /facet is a tool for Semantic Web developers as it provides an
intuitive interface to their complete dataset. However, the automatic facet configuration gener-
ated by the system can be further refined to configure it as a tool for end users as well.

Fresnel [25] defines a vocabulary for specifying how RDF graphs should be presented using
existing style languages such as CSS. It uses the concepts of lenses and formats. A lens identifies
the relevant properties of a Resource within a specific context. A format specifies how the
selected information is presented.

ClioPatria [130] is a toolkit for Semantic Web applications, which provides search and pre-
sentation facilities using standard Web components. It is based on SWI Prolog [160], which
provides a powerful search and exploration back-end of RDF data. The obtained result set may
be visualized using off-the-shelf interactive widgets that exploit the semantic characteristics of
the results, for example, clusters of image thumbnails, charts of aggregated property values, or
the timeline or geographical views that are part of Simile Exhibit [82].

10http://www.openrdf.org/

2.2. KNOWLEDGE ENGINEERING 41

Figure 2.6: Visualization of RDF generated by Noadster [128]

Welkin [106] visualizes an RDF graph by graphically representing its nodes and the relation-
ships between them. It is primarily meant as a tool for professional users of metadata repositories
to quickly get an overview of a specific dataset. Although for large graphs (larger than 1MB of
RDF) cluttering becomes inevitable, Welkin proposes several interactive selection and clustering
mechanisms to untangle the graph as much as possible.

2.2.4 Discussion

The MPEG-7 standardization committee chose to use XML Schema for describing the MPEG-7
descriptors and description schemes because of it ability to express the constraints required for
MPEG-7. Although the syntax can be automatically verified, the semantics of the descriptors
cannot be processed by a machine. Hunter [81] proposes RDF and RDF Schema to express
the semantics of MPEG-7 descriptors and provides an initial version of an MPEG-7 ontology.
Since the semantic expressivity of RDF(S) turned out to be insufficient, the additionally required
semantic constraints were obtained by adopting the DAML+OIL schema [138], the predecessor
of OWL [80].

Troncy et al. [13, 135, 136] criticize the limitation in semantic extensibility of MPEG-7. A
multimedia document can be described from a structural perspective (e.g. interview, shot, frame)
and a semantic perspective (e.g. “Paris-Nice cycling race”). In practice, however, both are needed
for search and retrieval of video fragments. For this reason, a multimedia description vocabulary

42 CHAPTER 2. RELATED WORK

Figure 2.7: Faceted browsing RDF in \facet [79]

integrating both perspectives is desirable. Although MPEG-7 [88] is a logical candidate, it has
some limitations: firstly, the expressivity of the semantics is insufficient for simple retrieval tasks,
secondly the semantics of the MPEG-7 descriptors are not formally defined. Troncy proposes
an architecture that uses MPEG-7 to describe the structural semantics of an audio visual docu-
ment and semantic web languages (RDF(S), OWL) for describing the ontological semantics (see
figure 2.4 on page 34 for an example of different conceptual levels in multimedia annotations).

Document engineering considers metadata to be outside the scope of the model. As a re-
sult, the treatment of metadata is relatively heterogeneous. Some document formats, such as
PDF or Microsoft Word, allow embedding of metadata in the document form. In contrast, other
document formats, such as Postscript, include no metadata. In addition, the metadata vocabu-
lary is typically dependent on the document format used. Alternatively, an annotator may store
metadata external to the document by referencing it. The document form, however, is typically
considered a final product, and suitable “hooks” for attaching annotations are therefore often not
apparent. There are exceptions, such as HTML, which allow an author to define anchors, which
an annotator may use to attach an annotation. A disadvantage of this approach is that an author
needs to identify a priori the relevant parts of a document that an annotator may want to annotate.
Note that although the examples above are based on textual documents, the same issues apply to
other media types, such as image, audio and video [14, 67].

Furthermore, annotation is typically considered a tedious and time consuming task that is

2.3. SOFTWARE ENGINEERING 43

only worth the effort if there is a clear need or advantage. Even then, due to the large amount of
data, manual annotation is, in many cases, no longer an option. Numerous media analysis algo-
rithms have thus been developed to facilitate this task [131]. However, some of these algorithms
detect information that is explicitly available during the production of the media. For example,
the title and authors of a document are often made explicit in the structured document. Like-
wise, Nack et al. [113] propose a method to preserve the metadata that is available during the
production process. For example, instead of transcribing the film after it is produced, the script
(if available) can be used to annotate it. Furthermore, the information that denotes the starting
and ending of a shot or scene is explicitly available in the tools used to montage the film. The
tools and devices that are used to produce the film need to be metadata aware and include and
synchronize metadata during the the intermediate stages of production.

The semantic web provides the framework for sharing knowledge resources. Valuable pre-
semantic web knowledge repositories, which have proved their value in practical usage (e.g.
Wordnet [55], Arts and Architecture Thesaurus [64]), however exist that were not designed for
a semantic web context. Note that porting these repositories to the semantic web is not trivial as
shown by Wielinga et al. [161] and our own work [68].

2.3 Software engineering

The term software engineering was used as a title for a conference organized by NATO in the
late sixties on the production of large and complex computer systems [114]. Up until that time
there was no general consensus on how to build and control complex software systems. Nowa-
days, software engineering is concerned with the development, operation, and maintenance of
software [17].

This section introduces relevant work on software engineering in the context of document
engineering and the generation of multimedia documents.

2.3.1 Software architectures for document engineering

Document engineering applies transformation rules to a source document to produce a target doc-
ument. In most cases multiple transformations (e.g. authoring-formatting, formatting-rendering)
are needed to get to the desired output format. In document engineering this is called the trans-
formation chain (figure 2.2 on page 29), which is typically implemented using a pipe-line archi-
tecture.

Pipe and filters

A pipe and filters (i.e. pipe-line) architecture in software engineering is used to describe a system
which consists of two or more sequential processing steps. A processing step is typically called
a filter. The output of a previous filter is used as input for the next filter, a pipe is used to connect
the two. A filter reads its input, performs a transformation and produces output. A pipeline
architecture requires that both the input and output are well described. The filter is considered
to be a self contained black box, which can be implemented independently from other filters.
The main advantage of the pipe and filters architecture is that pipes and filters can be combined
independently. Because of its modularizing nature, it is relatively easy to extend or modify a
system by adding or removing filters. In addition, it allows a complex process to be broken up

44 CHAPTER 2. RELATED WORK

by multiple less complex processes, which reduces errors and improves maintainability of the
system [17, 62].

Since the transformations in a transformation chain are sequential, the pipe-line architecture
perfectly fits a document engineering application.

XML and XSL(T)

Document engineering technology used on the web, such as XSL(T) stylesheets, specify the
transformation from an input XML document, to an output document, which is also specified in
XML. Since input and output are the same format, the output of a transformation can be used
as the input of the next transformation. This way, transformations can be chained, modularizing
the transformation process in reusable components.

Transformation languages, such as XSL(T), exploit the pipe-line software architecture by
using a functional specification of the transformation. In contrast to imperative languages, func-
tional languages have no side effects influencing the execution of the program. As a result, a
formatter can transform a document more efficiently, by transforming part of document, which
is sent immediately to the next transformation, independently of the rest of the document.

Cocoon [134] is a web based framework which can be seen as an intelligent manager of
the transformation chain. It adapts the form of a document on the fly by influencing the path it
traverses through the transformation chain. Cocoon exploits the advantages of a pipe-line archi-
tecture by reusing filters and using the concepts of pipes to link them together. Lemmens [96]
achieves a similar result by automatically generating XSL(T) stylesheets adapted to a specific
delivery context.

Representational State Transfer (REST)

In a web-based context the document transformation chain, and consequently the software ar-
chitecture, is split across a network. Roy Fielding describes, in his thesis Architectural Styles
and the Design of Network-based Software Architectures [57], the consequences of applying the
document engineering paradigm on the web. He presents a software architectural style, Rep-
resentational State Transfer (REST), that is optimized for large scaled distributed hypermedia
systems such as the web.

An important concept in the REST architecture is the notion of a resource denoting a specific
source of information, which is uniquely identified by a URI. A client (or server) can access a
resource by referring to its URI. Furthermore, the REST architecture states that server and client
should conform to a well defined protocol to allow communication between an arbitrary server
and an arbitrary client. Furthermore, due to the scale of the web it is impossible for a server to
keep track of the individual transactions with a client. Therefore, the communication is stateless,
which means that every transaction stands on its own. If history is needed it should be sent along
with the transaction.

In addition, since server and client are in principle independent, the communicated datas-
tructure should conform to a commonly accepted format.

Software architectures used in Cuypers

For the implementation of Cuypers, our multimedia document document engineering framework
described in chapter 5, we used a combination of constraint programming, logic programming
and object orient programming.

2.3. SOFTWARE ENGINEERING 45

Constraint Programming (CP) [10] is a programming paradigm which, instead of solving a
problem using a procedural approach like imperative programming (e.g. Java [15], Python [99]),
allows a programmer to declaratively specify the problem in terms of formalized constraints. A
constraint solver then automatically uses domain reduction algorithms to efficiently compute an
answer to the problem at hand. Constraint programming is often applied to domains which can
be modeled using arithmetic constraints as there are numerous off-the-shelf arithmetic constraint
solvers available. For non-arithmetic domains CP can be useful too, in which case the domain
reduction rules need to be specified explicitly.

Logic Programming (LP) [115] is a declarative programming paradigm using unification
and logic reasoning to find variable bindings that satisfy a certain statement. Unification is a
mechanism that binds variables to values based on the equivalence of statements. For example,
the statements f (X) and f (a) are unifyable, since the value a can be assigned to the variable X.
Note that f (X) is a generalization of the term f (a) since there are many other statements, such
as f (b), f (c) and f (d) that can also be unified with f (X). In contrast, the statements f (a) and
g(X) cannot be unified, since there is no variable binding possible that makes f (a) equal to g(X).
There can be multiple possible unifications for a statement which are enumerated in a search-tree,
where every branch represents a possible unification. Prolog, a logic programming language,
uses a technique called backtracking when the Prolog interpreter discovers an inconsistency. If
an inconsistency is detected it returns, in a depth-first manner, to the last unification which has
multiple alternatives, and selects the next possible unification. The program then continues with
the new unification and tries to prove the statement.

Logtalk [42] is an Object Orient Programming (OOP) [50] extension on top of the Prolog
language. It provides most of the features of an Object Oriented language, such as inheritance,
separation of interface and implementation. It is meant to improve the software engineering
capabilities of Prolog [109].

Constraint Logic Programming (CLP) [12] combines Logic Programming and Constraint
Programming by allowing constraint variables to be treated as logical variables. The difference
between a logic variable and a constraint variable is that a logic variable does not have an explicit
domain whereas a constraint variable does have an explicit domain. By adding a constraint, the
domain of a constraint variable is reduced so that it only consists of values that can participate in
a solution. For example, consider two integer constraint variables with their respective domains:
X ∈ {1, 2, 3, 4}, Y ∈ {3, 4}. The constraint X > Y states that the value of X is larger then the
value of Y . However, since the smallest value of Y is 3, the value X ∈ {1, 2, 3} will never lead to
a solution, consequently they can be removed from the domain leaving X = 4, Y ∈ {3, 4}. Since
the constraint is defined for two variables, in addition to reducing the domain of X, the domain
for Y can also be reduced. In this case, the value of X = 4 needs to be larger than Y ∈ {3, 4}.
The only value that qualifies is 3, leaving X = 4, Y = 3. In this case both variables have been
reduced to a single value, and can thus be treated as “normal” logic unifications. However, a
constraint variable can also be reduced to an empty domain. For example, X ∈ {1, 2, 3, 4}
with the constraint X > 5 reduces to X ∈ {}. This means there is no value which can satisfy
the constraint and thus leads to a constraint violation. In a traditional Constraint Programming
language the result of the program would therefore be something like “There is no solution
to the constraints you imposed.” Constraint Logic Programming, in contrast, treats a constraint
violation11 as an inconsistent unification and backtracks to the last unification to try an alternative
value, as would be the case in a Logic Programming language. Consequently, an alternative set

11In this thesis we also use the terms conflicting constraints, inconsistent constraints, and constraint failure
to denote constraint violations.

46 CHAPTER 2. RELATED WORK

of constraints can be imposed which might lead to satisfactory solution.
Several consistency notions for constraints exist in CLP (and CP), which relate to the effi-

ciency with which a constraint satisfaction problem (CSP) can be solved. A CSP is arc-consistent
if all domain values of all variables in the CSP participate in a solution to the CSP. For example,
the CSP: X ∈ {1, 2, 3}, Y ∈ {3, 4}, X < Y is arc-consistent, since all domain values participate
in a solution. In contrast, the CSP: X ∈ {1, 2, 3, 4}, Y ∈ {3, 4}, X < Y is not arc-consistent since
X = 4 does not participate in any solution. For CLP arc-consistency is an important notion since
it guarantees that a solution to a CSP can be found without backtracking.

The domain of a variable get reduced by participating in one or more constraints. How-
ever, after all the constraints have been applied there are often multiple values remaining in
the domain. In order to solve the CSP the formatter assigns a domain value for each vari-
able. In CLP this process is called labeling. Just like a constraint, an assignment reduces
the domain of the variable (to a single value), which is propagated to the domains of other
variables that share a constraint with the labeled variable. For example, consider the CSP
X ∈ {1, 2, 3}, Y ∈ {3, 4, 5}, X < Y . If the labeling assigns X = 3, the domain of Y is re-
duced to Y ∈ {4, 5}, which are the only values that can participate in a solution. Alternatively, if
the labeling procedure assigns Y = 3, the domain of X is reduced to X ∈ {1, 2}. The ordering in
which variables are labeled thus influences the solution to a CSP. There are different strategies
to label a constraint variable, for example, minimal labeling assigns the smallest value from a
domain to a variable, whereas maximum labeling assigns the largest value from a domain.

Note that labeling of an arc-consistent CLP, in contrast to a CLP that is not arc-consistent, is
guaranteed to succeed without revising (i.e. backtracking over) an assignment.

In Cuypers we implement the detection and resolution of constraints using CLP technology.

2.3.2 Generating multimedia
In the early nineties of the previous century the field of automatically generating multimedia
presentations and interfaces was quite active. This was mostly due to the technical advances of
computer systems that were capable of presenting multimedia content. Despite the development
of authoring tools, authoring multimedia presentations remains more complex than authoring
textual documents. This is mostly because a multimedia author not only needs to possess skills
to represent information using different media types, these media types also need to work co-
herently together, from a technical perspective, a user perspective and a design perspective. The
second generation of authoring tools, such as COMET [54], WIP/PPP [7, 8], DArtbio [18] and
the work on relational grammars of Weitzman and Wittenburg [159], which we describe next,
made an attempt to overcome this problem by allowing an author to express the intended message
on a higher level.

Relational grammars for multimedia documents

Weitzman and Wittenburg [159] acknowledge the need for higher level authoring. They argue
that for automatically adapting a multimedia document to the context it is played in, a different
authoring paradigm for multimedia documents is needed. They propose relational grammars,
which are an extension of string-based grammars. This way, part of the design knowledge used
by an author to create a multimedia document can be described and reused for other documents.
The grammar specifies rules which match relationships between objects, and outputs a set of
constraints that specify how the objects should be presented. For example, figure 2.8 presents
a grammar rule that states that an Article (0) is produced by a number of different objects,

2.3. SOFTWARE ENGINEERING 47

including Text object (1), Text object (2) that has an Author-Of relation with Text object(1),
a third Text object (3), which is a Description-Of Text object(1). These relationships
are conveyed graphically using the constraints defined at the bottom of the rule. The grammar
consists of multiple of these sets of rules, each of which adapts to a specific delivery context.

;;; Article(0) -> Text(1) Text(2) Text(3) Number(4) Image(5)

(Defrule (Make-Article The-Grammar)

;;; Object Relation

(O Article)
(1 Text)
(2 Text (Author-Of 2 1))
(3 Text (Description-Of 3 1))
(4 Number (Page-Of 4 1))
(5 Image (Image-Of 5 1))

;;; Geometric Constraints

:OUT
((right-of 1 5)

(right-of 2 5)
(right-of 3 5)
(right-of 5 4)
(top-aligned 1 5)
(top-aligned 5 4)
(spaced-below 2 1)
(spaced-below 3 2)
(set-font 1 10pt :bold)
(set-font 2 8pt : italic)
(set-font 3 8pt :plain)
(set-font 4 10pt :plain)))

Figure 2.8: Example of a relational grammar rule which produces an “article” [159] (comments
and indentation added).

The rules system of Weitzman and Wittenburg showed that (semantic) relationships between
media items can be mapped to formatting constructs, and that, depending on the delivery context,
alternative rule sets can be used.

The advantage of this approach is that an author can provide multiple rule sets that provide
alternative presentations of the same information. The main objection, however, is that for every
distinct delivery context an alternative rule set needs to be formulated. Furthermore, the rules
are domain dependent and require a relatively predictable input stream.

Despite this, we use a comparable grammar for mapping media items based on modality
properties to presentation constructs (see chapter 5). However, since there is a finite set of
modalities that can be associated with a media item (section 2.2.2), the input stream is relatively
predictable and therefore this restriction does not cause problems.

Weitzman and Wittenburg focus on the automatic adaptation of a document to different de-
livery contexts. It assumes that the function of the presentation is given. This is different from

48 CHAPTER 2. RELATED WORK

other approaches at that time, which typically included automatic construction of the function as
well (e.g. COMET, WIP/PPP).

COMET

The fully automated AI approach to generating multimedia documents focuses on documents for
specialized domains. For this type of document the investment of a human multimedia author
would not pay-off and therefore generated presentations are a viable alternative. Examples in-
clude technical maintenance manuals that give instructions to a mechanic how to perform certain
operations.

The COMET system generates “multimedia explanations” (the authors prefer to use the term
“multimedia explanation” rather then multimedia document) that explain how to perform diag-
nostic tests for a particular radio receiver-transmitter [54]. The resulting documents include step-
wise textual instructions, accompanied by example illustrations, of the action to be performed.

In response to a user request, the COMET system first determines what to say. A planner12

queries three knowledge bases, which encode domain objects and actions, a diagnostic rule-
set and detailed geometric knowledge, to produce a formalized representation of the sequence
of actions the mechanic has to perform. Then COMET determines how to express this using
multimedia content.

Both the textual explanations as well as the example images are automatically generated.
These processes, however, cannot be independent since there are inter-dependencies between
the media items and the layout of the page. For example, a reference number or symbol in
the text should correspond to the embedded symbol in the image. Or the width of an image
determines where a line-break should occur in the explanatory text. Furthermore, there is a
two way dependency between the generation of media items and the generation of the overall
presentation. For example, the dimension of a media item is dependent on the available size set
by the delivery context, whereas the size of the overall presentation is dependent on the generated
media items.

Although the primary objective of the COMET system is to make a particular knowledge
base accessible to a user, the steps involved in producing a multimedia explanation are similar to
producing a multimedia document. Based on this, we can make a number of observations on the
COMET system.

Firstly, the advantage of generating media items is that it exactly matches the requirements
of the (automatic) author. On the downside, generating media items is far from trivial. It requires
extensive knowledge and significant computational resources (five workstations) and produces,
compared to human labor, media items of mediocre presentation quality.

Secondly, In addition to expert domain knowledge for answering the query of the user,
COMET uses extensive knowledge bases for describing the generation of media items and the
generation of the overall presentation. Because of the tight integration of the knowledge bases
and the explicit links between the knowledge bases, the COMET framework is not optimized for
generating presentations for different domains.

Finally, COMET showed there are two-way dependencies for which there exists no straight-
forward strategy that leads to the best possible solution. Similar dependencies exist in our own
work, which we discuss in chapter 4.

12A planner is an algorithm that given a particular goal and constraints produces the actions that when carried
out will lead to desired goal [125].

2.3. SOFTWARE ENGINEERING 49

WIP/PPP

WIP/PPP is comparable to COMET in the sense that it generates multimedia presentations ex-
plaining the use, or assembly, of electronic devices [7, 8]. In contrast to COMET, WIP specif-
ically aims at an architecture which is capable of adapting the presentation to specific require-
ments, which include the user (language, expertise, preferred medium), the delivery context
(space limitations, capable of playing audio) and the domain. Consequently, the architecture of
the WIP system identifies generic phases in the authoring process, which are independent of a
specific domain, user or device, which are considered as external inputs to the system.

The WIP/PPP system first selects and retrieves relevant knowledge from one or more knowledge-
bases. The selected knowledge is grouped and ordered to produce a coherent semantic structure.
The system then selects modalities that are most appropriate for communicating the intended
information in terms of media content, taking into account the preference of the user and capa-
bilities of the delivery context. After this, the media content is generated. Finally, the generated
media items are spatially arranged and temporally coordinated in a layout and presented to the
user.

WIP/PPP, just as COMET, generates most of the required media items. Although the WIP
system is capable of generating presentations for multiple domains, there are significant knowl-
edge requirements that need to be explicitly described by a domain expert.

DArtbio

DArtbio automatically generates biographies based on data provided by a knowledge-base. In
addition to the automatic generation of textual descriptions, DArtbio specifically focuses on
the automatic generation of layout. Bateman et al. [18] divide the construction of page layout
(i.e. typographic design) into three parts: Micro-typography, which represent the formatting of
the smallest units in a document (e.g. characters, spaces, words etc.); Macro-typography, which
describes the formatting of the largest units in a document (e.g. columns of text, placement of fig-
ures etc.); and Style, which represents the perceivable properties of a document (e.g. font, color).
Unlike COMET and WIP/PPP, which focused on micro-typography (i.e. the generation of me-
dia) the approach taken by Bateman et al. is more concerned with macro-typography. Bateman
argues that the way elements are presented on a page is partly responsible for the effectiveness of
the message conveyed by the document. However, the design of a page-layout currently depends
largely on the creativity of the designer.

Bateman’s hypothesis is that a correspondence exists between the rhetorical structure of the
document and the layout used to present it. By manually analyzing existing page layouts and
relating them to the rhetorical structure of the text, they developed a set of heuristics that allowed
them to automatically decompose an RST tree into hierarchical layout units13. An example
heuristic states that a nucleus and its satellites should be part of the same logical unit. These
layout units are formatted bottom-up, expressing an RST relationship by a spatial proximity
relation between the layout units.

13Rhetorical Structure Theory [102], although originally intended as a model for generating text, is often
used by linguists for analyzing the discourse structure within a text. RST defines relationships between spans
of text. This can be a binary relation, in which case the Nucleus denotes the target span, relative to the source
span, which is called the Satellite. There are 21 relations defined for Nucleus-Satellite relations, which include
Elaboration, Condition, Motivation. There are also Multi-nuclear relations which define a relationship between
multiple spans of text, for example Sequence and Contrast.

50 CHAPTER 2. RELATED WORK

Figure 2.9: The Standard Reference Architecture for IMMPSs [27]

Although Bateman’s work is primarily designed for text-based documents, we used RST
representations in one of our evaluation scenarios (see section 6.2 on page 117).

The Standard Reference Model for Intelligent Multimedia Presentation Systems

The Standard Reference Model for Intelligent Multimedia Presentation Systems (SRM-IMMPS)
is a joint effort of various projects active in the development of IMMPSs, such as the COMET
and the WIP/PPP systems. Its goal was to define a commonly agreed on reference model [27].

In the late nineties of the previous century, the need for such a model was motivated by prac-
tical problems the community was dealing with. These include the unintentional and inefficient
replication of results due to the lack of a vocabulary to identify common parts in IMMPSs archi-
tectures. Furthermore, existing solutions were hard to reuse for other projects because of the use
of different terminology and abstractions. Finally, the absence of a reference model limited the
synergy between similar projects as systems were hard to compare.

Figure 2.9 represents the architecture graphically. On the left hand side are the processing
layers. On the right hand side, the knowledge server that contains the knowledge required by the

2.3. SOFTWARE ENGINEERING 51

processing layers. The goal formulation and application provide the initial input to the system14.
The presentation is generated for a user, who is presented at the bottom15.

The bi-directional arrows between the processing layers indicate that the system occasion-
ally needs to backtrack to a previous layer to resolve a problem in the current layer. Note the
difference with the single processing direction in text based document engineering.

Control Layer The first layer of the SRM translates the incoming presentation goal, as specified
by the user, to a format understandable by the IMMPS.

Content Layer The formalized presentation goal is specified at a relatively high-level of ab-
straction (e.g. “Give information about X”). The content layer extends and refines the
high-level goal to a number of subgoals which can be processed by parts of the IMMPS
(e.g. “Formulate a query which retrieves media related to X”, “Formulate a query which
retrieves knowledge about X.”, “Formulate a query which retrieves device characteris-
tics.”).

These subgoals are executed by the system and relevant information and data is retrieved
from the Knowledge Server. Furthermore, the system chooses what combination of modal-
ities to use in order to communicate this information to the user, keeping in mind the
restrictions of the device and the characteristics of the user. The output of this layer
are media communicative acts. These are multimedia equivalents of communicative-acts,
which achieve a particular effect on the user (e.g. “explain concept X”) [105].

Finally, the content layer determines the structure and order in which the selected infor-
mation should be presented to the user.

Design Layer The design layer performs two tasks in parallel, planning the generation of media
items for the communicative acts, and the design of the layout which communicates the or-
der and structure of the information. The generation of media depends on layout (e.g. the
media items need to fit within the space allocated by the layout). Conversely, the design
of layout is dependent on the available media items. Since there is no justification why
one should precede the other they need to be performed in parallel, negotiating choices
which are mutually dependent. Depending on the application at hand and a preference for
either layout or media, the system can define an order between the two.

The output of this layer are realization plans, which, when executed, relatively straight
forwardly produce media and layout.

Realization Layer The fourth layer performs the realization of both the media and layout real-
ization plans.

The output of this layer is a specification of presentable media objects together with layout
information. It contains all the information necessary to play the presentation. The format
of this phase is a good candidate for standardization since it would allow independent
third party players to present the document.

14In practice the application and the goal formulation are often combined in a single component. Here
they are separated to distinguish between the availability of application knowledge and the use of application
knowledge to satisfy the presentation goal.

15Typically a user would interact with the system by formulating the goal and then obtain the result in the
form of a generated presentation.

52 CHAPTER 2. RELATED WORK

Presentation Display Layer The final layer is responsible for rendering the presentation spec-
ification produced in the previous layer, so that it is perceivable by the user.

The Knowledge server provides the layers of SRM with the necessary knowledge to gener-
ate a multimedia document. Note the difference with the document engineering transformation
chain, which is independent of external (knowledge) resources. The knowledge server consists
of experts (i.e. agents) that cover a particular aspect of the presentation such as application, user,
context and design.

User Expert The user expert maintains a model of a specific user currently using the system.
This knowledge may include physical and mental abilities, preferences, knowledge and
beliefs.

Application Expert The application expert provides the system with application specific knowl-
edge. This includes the current state of the application (e.g. the user has paused the pre-
sentation). It also makes (generic) knowledge bases accessible to the specific needs of the
application (e.g. conversion of data format).

Context Expert The context expert keeps track of the context of the presentation. This includes
knowledge about what has been presented to the user before, and in which way the user
has interacted with the system. This type of information allows the system to be personal-
ized. For example, it can prevent the system from presenting the same information twice
to the same user.

Design Expert The design expert contains information needed for an IMMPS to present certain
types of information. This includes knowledge about layout, colors, modalities, design
constraints and design characteristics of the output device.

The SRM-IMMPS and the systems it was based on were developed by research groups with
a strong background in Artificial Intelligence (AI). As result, a number of AI technologies were
suggested for implementing parts of the SRM-IMMPS. For example, a planning system could be
used for organizing the steps involved in creating a presentation. This includes plans for gener-
ating media as well as plans for combining them together in a presentation. A knowledge server
could be used for providing the knowledge about the domain, the design and the user, required by
the planner for making decisions concerning the adaptation of the presentation. Finally, experts
(i.e. agents) could negotiate trade-offs in the desirability of certain features. For example, a large
font increases readability, however, it might require too much space in a particular context.

The reference architecture provided by SRM-IMMPS gives a good overview of the pro-
cesses, data-flow and required knowledge resources in an intelligent multimedia presentation
generation system, which is still mostly valid today. From a practical perspective, however, the
knowledge and computational resource requirements are too demanding to successfully build
such systems on a large scale. More specifically, the investment necessary for describing the re-
quired knowledge makes the approach only suitable for small focused domains. Furthermore, as
the SRM-IMMPS assumes a closed architecture, porting the system to other domains is difficult.

2.3.3 Intelligent multimedia systems on the web
The automatic generation of media items is considered part of the reason why systems based
on SRM-IMMPS are only viable in specific domains. When, at the beginning of last century

2.3. SOFTWARE ENGINEERING 53

media formats, such as MPEG4 [86] were standardized, multimedia data became more readily
available. Furthermore, the web started to emerge, which inspired the reuse of media.

Worring [164] proposed a system design which (re)uses existing multimedia data stored in
a multimedia database, such as the Monet multimedia database. The Monet system by Wind-
houwer et al. [163] uses an automatic webcrawler, which retrieves media items in bulk from the
web. The media items are analyzed and the results are stored as metadata in a relational database.
In addition to advanced querying of web based resources, the available metadata also allowed
reuse of media items in a web context. Up until then, media resources were stored and used
locally.

From the hypermedia community, Hardman et al. [77] proposed a model which integrated
SRM-IMMPS with the Amsterdam Hypermedia Model, which explicitly supports reuse of web
based media items.

Euzenat et al. [51] argue for generic adaptation techniques for multimedia documents. They
propose a framework of formally described constraints that describe the document in a qualitative
way. They compare a qualitative description of a multimedia document to writing a textual
document in LATEX instead of PostScript. Since a qualitative description is closer to the semantic
intention of the author it is better suited for applying adaptations without changing the intention
of the document. For example, a constraint solver can decide to present two images in sequence
rather than in parallel if the resources of the delivery context (e.g. small screen) are insufficient.

In the remainder of this section we introduce the web based information systems (WIS),
Hera, Artequakt, SampLe and Vox Populi that deal with multimedia content in a web environ-
ment.

Hera

Hera [147] is a methodology that supports the design and engineering of a Web Information
System. It distinguishes three layers:

Semantic Layer The semantic layer defines a meta model (conceptual model), which provides
a homogeneous view of the (external) structured content resources used in the WIS.

Application Layer Based on the conceptual model the application layer defines an abstract hy-
permedia presentation structure. This presentation structure includes adaptation strategies
based on a device or user model.

Presentation Layer The presentation layer combined the instance data provides by the seman-
tic layer, and uses it to instantiate the presentation structure as defined by the application
layer, while applying the required adaptations on the fly.

As in document engineering, Hera explicitly separates function (Semantic Layer and Appli-
cation Layer) from form (Presentation Layer), consequently it can present a collection of data,
without the need to author each document individually. In addition, the approach allows adapta-
tion to the delivery context.

Hera primarily focuses on the function of a presentation (Semantic Layer and Application
Layer). For the form (Presentation Layer) Hera uses a relatively simple XSL(T) transformation
for presenting a document in various formats (e.g. HTML, SMIL, WML). If more sophisticated
formatting is required, it refers to external formatters such as Cuypers [140].

54 CHAPTER 2. RELATED WORK

Artequakt

Artequakt [89] generates artist biographies. The system uses a biography ontology that defines
the data for an artist biography. Information is collected by parsing text found on the Web and
is presented using templates. This allows, at least in theory, the reuse of textual information
published on the Web about artists.

Artequakt generates artist biographies that are comparable with our own work (see DISC
and SEMINF in chapter 5). It focuses primarily on automatic knowledge extraction from web
pages and the narrative representation on these in a biography. As such, Artequakt is text-based
and does not consider the issues of presenting biographies using multimedia data.

SampLe

SampLe [52] is a system that, rather than generating presentations fully automatically, provides
intelligent support during the authoring phases of a presentation. It distinguishes the following
authoring stages for which it provides support.

Topic The author of a presentation needs to select a topic of the presentation. The topic of a
presentation can be known a priori in which case the topic selection is the starting point
of the presentation authoring. Alternatively, an author can browse through the available
material in order to select a topic of her liking. In addition to browsing facilities, SampLe
portrays associated domain semantics to allow the author to become familiar with the
domain.

Discourse Structure The structure of a presentation typically follows a genre, such as biogra-
phy, essay or article. The selection of a discourse structure is dependent on the available
media content and the message an author intends to convey. SampLe suggests one or more
genres which a user can manually adapt to fit the message intended.

Media Content The content of the presentation is the actual media items used in the presenta-
tion. The selection of media items depends on both the topic of the presentation, as well
as the genre and the discourse role the media item plays within the discourse structure.
SampLe either suggests existing media items which are stored in a repository, such as
images and text fragments which fit the requirements of the topic and genre, or allows an
author to create or include new media material.

Style In addition to structure and content, an author also needs to choose appropriate layout,
colors and typography. These are dependent on the topic of the presentation and the
genre, as well as external factors such as the user group the presentation is authored for.
SampLe suggests stylesheets for presenting the presentation in HTML as well as exporting
a presentation structure which can potentially be interpreted by a presentation generation
engine such as Cuypers [140].

SampLe makes the phases in an authoring task explicit and acknowledges the dependencies
between them. Similar dependencies are present in a fully automated system (see 4). SampLe
resolves these dependencies by presenting suggestions to a human author. A human author
can decide to follow a suggestion if she feels it is appropriate, otherwise she can intervene by
authoring the part manually. By including a human author in the loop, SampLe is potentially
capable of generating more sophisticated presentations than a fully automatic system. However,

2.4. SUMMARY 55

SampLe is an intelligent authoring system, designed to address a single document at a time,
whereas our document engineering system addresses a class of documents.

Vox Populi

Vox Populi [26] is a system that allows users to automatically generate video documentaries
supporting or attacking a point of view selected by the user. The existing video clips, interviews
with people about the terrorist attack of 11th September 2001 in the United States, are annotated
with statements denoting the argument conveyed in the clip. Based on these annotations, knowl-
edge of constructing an argument and cinematographic knowledge, the system automatically
assembles a sequence of video clips that support or attack the selected point of view.

Vox Populi shows the importance of contextual information for the interpretation of a media
item. For example, Vox Populi sometimes uses the same clip in different contexts to express
different point of views. For example, a claim conveyed by a particular clip can be made stronger
by adding material that backs up the claim, or made weaker by adding material that opposes the
claim. In our own work, similar contextual dependencies are shown by using the same image
as a portrait in a biography of Rembrandt, or illustrating the painting technique chiaroscuro (see
chapter 5).

2.3.4 Discussion
The pipe and filters software architecture fits well the sequential transformations steps (transfor-
mation chain) typically used in document engineering applications. Furthermore, the stateless
property of the pipe and filter comply with the architecture of the web. However, as shown by
SRM-IMMPS, the processing of multimedia documents sometimes needs to backtrack. This
conflicts with the pipe and filters architecture which is unidirectional.

SRM-IMMPS is the synthesis of a number of projects concerning the automatic generation
of multimedia documents. The reference model specifically aims at describing a vocabulary that
identifies common understandings and allows comparison to specific systems, including Cuypers
(see chapter 5).

However, the architecture of SRM-IMMPS is based on the assumption that the included me-
dia is automatically generated. Although this was a viable assumption at the time, since there
existed no framework that provided incentive for a system to be optimized for reuse (the web
was still relatively novel and only used on a small scale), this required significant computational
resources. Furthermore, the authors of the SRM-IMMPS acknowledged the requirement of ma-
chine processable knowledge resources. As a solution they refer to a research initiative that was
meant to support knowledge sharing (KQML).

The high requirements on computational resources and knowledge resources, prevented the
development of automatic multimedia presentation systems on a large scale.

2.4 Summary
In section 2.1 this chapter we showed that current document engineering technology does not
apply to multimedia documents. Furthermore, in section 2.2 we showed that in order for a
machine to process multimedia data, a formal framework describing the media from different
perspectives is required. Finally, in section 2.3 we showed that generating multimedia documents
requires considerable investments in computational resources and knowledge encoding.

56 CHAPTER 2. RELATED WORK

Based on these observations, in the next chapter we will derive requirements for an extended
document engineering model that includes multimedia documents.

Chapter 3

Requirements

Based on the desirability of document engineering methods for multimedia documents (chap-
ter 1) and the state of the art in related areas (chapter 2), we derive a first set of requirements for
an extended document engineering model that supports multimedia documents. As described in
section 2.3.1, a document engineering model is typically not independent of the environment in
which it is applied. Therefore, in addition to requirements for the model, we also derive archi-
tectural requirements for the system that implements the model. These requirements have then
been extended and refined based on the lessons learned during the development and evaluation
of the software framework that is discussed later (chapters 5 and 6). The resulting set of refined
requirements is presented in this chapter.

The first four sections focus on requirements for an extended document engineering model.
The requirements in these sections are based on the traditional document engineering model,
where essential differences compared to the traditional model are emphasized. In section 3.1 we
focus on the requirements that define the relation between input, transformation and the produced
output of a document engineering model. The subsequent sections focus on the vocabularies
used to describe the individual components, transformation (section 3.2), input (section 3.3), and
output (section 3.4).

In the fifth section we derive practical requirements for a system that implements the ex-
tended document engineering model and clarify the mutual dependency between the model and
the architecture. Finally, in the last section we summarize our conclusions.

3.1 Document engineering principles

Recall that a form convention is a shared understanding between an independent author and
reader about how a particular function can be communicated using a particular form. Form
conventions are thus independent of a particular document, while they may be used to convey
part of the document function. Document engineering exploits form conventions as a means to
reuse authoring and design effort.

In this section, we first explicitly define the preliminary requirements that need to be satisfied
to be able to apply a document engineering model. In the remainder of this thesis we assume the
preliminary requirements are met.

57

58 CHAPTER 3. REQUIREMENTS

3.1.1 Preliminary requirements
The document engineering model exploits form conventions as a document-independent abstrac-
tion to support adaptation to the delivery context and reuse of style (see section 1.1.1). We as-
sume form conventions in multimedia documents can be exploited in a similar way. Thus, a
preliminary requirement for a document engineering model that supports multimedia documents
is that there exist sufficient form conventions to be exploited by the document engineering model.

Preliminary-Requirement a (FORM CONVENTION). The author and reader of a document
should independently agree on the function that may be represented by a form convention.

If this requirement is satisfied, the document engineering model may be applied, which in-
troduces the designer as a third independent stake holder. Since author, designer and reader fall
outside the scope of the model, an additional preliminary requirement is necessary to ensure that
three stakeholders, author, designer and reader share the objective to preserve document function
as faithfully as possible.

Preliminary-Requirement b (STAKEHOLDER AGREEMENT). Reader and author should both
trust the designer to apply form conventions that convey to the reader the functions intended by
the author.

The author and reader of the document do not necessarily need to share the representation
form conventions used to express function. For example, the presentation of date and time may
be different between an American author and a European reader. This is, however, not a problem
as a designer may, independently of the author, choose a representation that is most appropriate
for the reader.

3.1.2 Reuse of authoring and design effort
The primary objective of the document engineering model is to reduce authoring and design
effort (see section 1.1.1). Our first requirement therefore is that a document engineering model
should support reuse of authoring and design effort.

Requirement 1 (SCHEMA DOCUMENT). A document engineering model should support reuse
of authoring and design effort.

We have named this requirement “Schema document”, which may not be directly evident.
However, in text-based document engineering this requirement can be (partly) formalized by a
schema document. A schema document defines a class of structured documents. Likewise, a
stylesheet defines the class of structured documents the stylesheet can be applied to. If both
author and designer agree on the schema document, the stylesheet may be applied to transform
the structured document and reuse of authoring and designing effort can be guaranteed (see
section 2.1.3).

Document engineering reduces authoring and design effort by explicitly separating the two
(see section 2.1.1). The results of a single authoring effort may be reused to produce multiple
versions, adapted to a specific delivery context, of essentially the same document. Therefore,
a document engineering model should be able to represent authoring effort explicitly, while
abstracting from design effort. We refer to this representation as the structured document.

Requirement 2 (STRUCTURED DOCUMENT). A document engineering model should have an
explicit representation of document function that abstracts from the document form.

3.1. DOCUMENT ENGINEERING PRINCIPLES 59

The represented function in a structured document may be implicit or explicit. For example,
in text-based documents, such as HTML and LATEX, the formatting of a title is a form convention
that is reusable (e.g. typically a title is positioned on top of the page and uses a relatively large
font). The markup <title>This is not a title</title> indicates that the text “This is
not a title” is, indeed, a title. In this example, the title tag makes part of the function explicit.
In contrast, the function of the text in between the tags remains implicit, which is illustrated by
the contradiction that is apparent to the reader, but not to the formatter.

Similar, but counter intuitive, are media items, which also represent function implicitly
through form. For example, a figure may be part of the structured document, which is typi-
cally realized by including a reference to the file that contains the figure. However, the file is,
typically, not accessed during the formatting, but only at the very last rendering stage when all
the formatting decisions have been made (see section 2.1.3).

By explicitly separating design effort from authoring effort, the results of a single design
effort may be reused to format multiple structured documents according to a consistent style.
Therefore, a document engineering model should be able to represent design effort explicitly,
while abstracting from authoring effort. We refer to this representation as the stylesheet.

Requirement 3 (STYLESHEET). A document engineering model should explicitly represent the
design effort necessary to transform an explicit representation of the document function to its
corresponding document form.

The class of structured documents defined by schema document and the class of documents
that can be transformed by a stylesheet do not necessarily need to be identical. For example,
the formatting of the title page of this thesis is formatted according to specific prescriptions of
the university. The required form conventions for this page are not part of the more generic
“book” stylesheet we use, and needed to be specified specifically for this thesis. The same
holds for the associated structured document in which this thesis was authored, of which the
original schema did not provide for functional elements to represent the content that needed to be
conveyed on the title page. Although one can argue that the schema document should be extended
to include the needs of a specific document, this would make the schema document and the
associated stylesheet more detailed and therefore reduces the class of documents it can be applied
to. Consequently, there is a trade-off between the specificity of a stylesheet’s transformation and
the size of the class of structured documents that can be transformed by the stylesheet.

3.1.3 Implicit assumption: formatting satisfies constraints of delivery con-
text

Although a textual document is typically spatially constrained by page or screen borders, the
transformation of a structured document is commonly assumed to always succeed. The current
document engineering model assumes an “overflow” strategy that guarantees the resolution of
spatial constraints. Examples of such overflow strategies include the ability for paper-based doc-
uments to add an additional page if the remaining text does not fit the current page, whereas
for electronic documents scroll-bars are often used as an overflow strategy. Due to such over-
flow strategies, adapting the document form to the spatial constraints imposed by the delivery
context is for text-based document engineering considered a transformation detail that is to be
resolved at the rendering stage, when all major decisions relevant to the document form are al-

60 CHAPTER 3. REQUIREMENTS

ready made1 (see section 2.1.3). Nevertheless a document engineering model should enforce that
the constraints imposed by the delivery context are respected.

Requirement 4 (RESPECT CONSTRAINTS). A document engineering model should enforce that
the document form respects the constraints imposed by the delivery context.

Some textual documents, such as newspaper articles or scientific publications, may also have
page limits. Although a formatter can have strategies to limit the required space, for example,
by adjusting the spacing, these strategies are not guaranteed to produce a document within the
page constraints. In this case, the formatting fails (it produces a document that exceeds the page
limit) and the key principle of document engineering, that adaptations to the form need not to
involve changes to the function, breaks down. Manual intervention of the author or designer will
be needed to resolve the conflicting constraint, for example, by rephrasing or deleting parts of
the text in the structured document.

In order to respect the constraints imposed by the delivery context, they should be made
explicitly available.

Requirement 5 (DELIVERY CONTEXT). A document engineering model should have an explicit
representation of the delivery context that constrains the document form.

In addition to constraints on the spatio-temporal real estate, the delivery context might also
constrain other properties of the document form, such as technical support for specific media
types, network bandwidth or more user-oriented accessibility constraints.

3.2 Stylesheet vocabulary

A stylesheet represents the collection of form conventions that are used to transform a structured
document to its corresponding document form. In this section we state the requirements on the
vocabulary to represent form conventions in a stylesheet. This includes, besides requirements
that mostly coincide with the traditional text-based model, additional requirements that are of
specific importance for multimedia documents, notably, the transformation of media items and
the resolving of constraint violations.

3.2.1 Representing form conventions

Reuse of authoring and design effort is based on the assumption that form conventions can be
explicitly described. A first requirement is thus that the stylesheet vocabulary should be suffi-
ciently expressive to explicitly represent form conventions. We refer to explicitly represented
form conventions as style rules, the part of the document function that it conveys as a functional
construct, and the part of document form that conveys the function as a form construct (cf. sec-
tion 2.1.3). The part of the style rule that defines to which functional constructs it may be applied
is referred to as the selector and the part of the rule that defines the resulting form construct is
referred to as the descriptor of the rule.

1Note that although all major design decisions have already been made, the remaining client-side trans-
formation still includes detailed formatting issues such as pagination, hyphenation and kerning, which are
important and involve relatively complex algorithms (see section 2.1.1).

3.2. STYLESHEET VOCABULARY 61

Requirement 6 (STYLE RULE). A stylesheet vocabulary should, for each of its style rules, be
sufficiently expressive to (a) explicitly select the functional construct(s) the rule applies to, and
to (b) explicitly describe the resulting form construct.

The subsequent sections 3.3 and 3.4, elaborate on requirements for the vocabularies used to
define functional constructs and form constructs.

A stylesheet, and thus a style rule, are, in principle, independent of a specific document.
The function(s) to which a style rule could be applied are defined by a selector, which typically
defines the conditions that should be met in order to apply the style rule. It thus abstracts from the
details of a specific functional construct in a specific document. Similarly, the form represented
by a style rule is a description of the form that conveys the selected function, but abstracts from
the details of the specific form construction used in a specific presentation. For example, consider
the CSS style rule p {color: blue;}. The selector of this style rule is sufficiently abstract
to address all p elements (i.e. functional constructs) in a broad class of structured documents.
The descriptor only specifies that they should be colored blue, abstracting from other details of
the particular form construct used to convey the p elements.

For another example, consider the CSS style rule p.quote {color: green;}, which
is more specific then the previous example as it addresses only the p elements that have a
class=‘quote’ attribute. This example illustrates that in CSS, style rules can have a dif-
ferent scope, selecting larger or smaller parts of the structured document. This is useful for a
stylesheet designer because it allows a general rule to specify the bulk of the transformation,
with exceptions that can be specified by more specific rules. A selector vocabulary should thus
be sufficiently expressive to select any sub-part of the structured document. Because multiple
style rules may match, a model needs to define how to unambiguously select which rule to apply
and in what order.

Sub-Requirement 6.1 (EXPRESSIVE SELECTOR). The selector vocabulary of a style rule should
be sufficiently expressive to address any subset of functional constructs in a structured document.

A CSS style rule basically adds formatting properties to the information described in the
structured document, but does not alter the structure of the functional constructs as they are
conveyed by the document form. The underlying assumption in CSS is that the structure of
the structured document is also the most appropriate structure of the document form. This is,
however, not always valid as form conventions sometimes influence the structure of a document.
For example, dates in Northern America follow the pattern month-day-year, whereas in Western
Europe they are structured day-month-year. In contrast to CSS, XSLT style rules allow adapta-
tion of the structure of a form construct (section 2.1.3). For multimedia documents, quite often
the structure of functional constructs does not correspond to the structure of the associated form
construct. For example, an ordered sequence of images in the structured document can be pre-
sented using a temporal structure, showing one image after the other, or using a grid structure.
In both cases, the structure of the form construct may differ from the structure of the underly-
ing functional construct. Therefore, a style rule should be sufficiently expressive to define form
constructs with structures that differ from the functional constructs they convey.

Sub-Requirement 6.2 (EXPRESSIVE DESCRIPTOR). The descriptor vocabulary of a style rule
should be sufficiently expressive to adapt the structure of a form construct.

62 CHAPTER 3. REQUIREMENTS

3.2.2 Implicit assumption: default style rule adapts form while preserving
function

Typically, a stylesheet is understood as the collection of explicit style rules that formalizes form
conventions, which may be adapted by a designer. However, it is important to note that in
addition to these explicit style rules, there are also implicit style rules. These transform the parts
of a structured document of which the function is not made explicit, such as media items and
plain text. For example, the text in an HTML document that does not contain mark-up, represents
function implicitly. A generic, default style rule that is not part of an explicit stylesheet, will
typically transform the text in the structured document to the text in the document form.

Since these style rules are independent of the function they represent, they are generic and
can also be applied independently of the stylesheet that is used. Therefore, they are typically
built into the formatter and therefore hidden to author and designer. Nevertheless, a document
engineering model should, besides style rules that transform the explicitly represented docu-
ment function in a structured document, have support for style rules that transform the implicit
document function in a structured document.

Requirement 7 (DEFAULT STYLE RULES). The function that is implicitly represented in a struc-
tured document (i.e. media items) should be generically transformed to form while preserving the
function.

The requirement allows the form of a media item to be adapted during the transformation. A
typical textual example of this is the typesetting of plain text which may apply hyphenation, line
and page-break algorithms to adapt the resulting form. While these algorithms may be complex,
they should not, and typically do not, change the function of the text. Indeed, in text, cases where
the formatting alters the meaning of the text are quite rare. Consider the sentence: “The merchant
liked the agora”. This sentence is ambiguous since agora can either mean “a small coin” or “a
marketplace”. However, the hyphenation of both word senses is different: ago-ra and ag-o-ra,
respectively. If the word agora needs to be hyphenated, the formatter needs to know which sense
of agora the author intended in order to apply the correct hyphenation. This information is, in
general, not available and therefore the formatter can make a mistake in preserving the function.

In multimedia documents, the risk that similar changes to the form unintentionally change
the underlying function is much larger. Even superficial operations, such as the scaling of figures,
cannot be considered a generally applicable transformation strategy. For example, the correct
perception of the scaled image may depend on the portrayed content (e.g. holiday photographs
might require less detail while scaled down x-ray scans may become useless).

3.2.3 Implicit assumption: formatting always succeeds
Implicitly, the traditional document engineering model assumes that documents have a generic
overflow strategy, which ensures the transformation does not fail (see section 3.1.3).

Formatting of multimedia documents cannot be based on such simple and generic overflow
strategies. The positioning and alignment of a media item, in relation to other media items,
may carry significant semantics. Furthermore, the combination of media items often conveys
a particular relation that would not be conveyed if the media items would be presented sepa-
rately [48, 49, 93, 110]. For example, the Russian filmmaker Lev Kuleshov demonstrated that an
audience may interpret a shot differently if the shot showed prior to it is different2.

2The experiment showed an audience a neutral face of a man. The shot prior to the face showed either a

3.3. STRUCTURED DOCUMENT VOCABULARY 63

Consequently, the flexibility to adapt the form for multimedia documents is reduced, which
increases the chances of a formatting failure.

Requirement RESPECT CONSTRAINTS (#4/p.60) states that the document form should re-
spect the constraints imposed by the delivery context. Since violation of these cannot be solved
by simple overflow strategies without changing the function being conveyed, the formatting of a
multimedia document may fail. An extended document engineering model should, therefore, de-
tect such formatting failures and allow the specification of resolution strategies to resolve them.

Requirement 8 (ALTERNATIVE FORMATTING). The transformation from function to form should
detect failure and be able to apply an alternative transformation that preserves function while
violating no constraints.

The traditional text-based document engineering model does not support the possibility to
detect formatting failures and specify an alternative resolution strategy. Therefore, currently
available document engineering technology is not suited to implement the document engineering
paradigm for multimedia documents(see section 2.1.4).

3.3 Structured document vocabulary

In this section we derive requirements for the vocabulary used to explicitly represent document
function. In addition to requirements that largely coincide with the text-based model, these also
include additional requirements as a consequence of the ALTERNATIVE FORMATTING (#8/p.63)
requirement, which is absent in the text-based model.

A structured document represents part of the document function explicitly, with the intent
to reuse form conventions that are described in a stylesheet. The vocabulary used to specify
the structured document should therefore be sufficiently expressive to explicitly represent the
function represented by a form convention.

Requirement 9 (FUNCTIONAL VOCABULARY). The vocabulary used to describe a structured
document should be sufficiently expressive to explicitly denote the function represented by a form
convention.

Note that requirement FORM CONVENTION (#a/p.58) refers to the conceptual agreement
between author and designer on the function represented by a form convention, whereas this
requirement (FUNCTIONAL VOCABULARY (#9/p.63)) refers to the vocabulary used to represent
the function of form convention.

In multimedia documents and text-based documents grouping is typically used to convey
the hierarchical/rhetorical structure of the document. While the layout and style of these groups
is determined by the style sheet, the functional constructs should provide the author with the
vocabulary to define the underlying grouping relations.

Sub-Requirement 9.1 (EXPRESS GROUPING). The vocabulary used to specify the structured
document should be able to express grouping of functional constructs.

girl, a bowl of soup or a coffin. Depending on the shot showed prior to the face the audience interpreted the
emotional expression of the man as, respectively, desire, hunger and grief. This effect is known as the Kuleshov
effect.

64 CHAPTER 3. REQUIREMENTS

For example, in text-based documents, paragraphs group units of text that semantically be-
long together. Likewise, paragraphs may be grouped into sections and sections into chapters.
Similarly, in multimedia documents a group of functional constructs can be semantically related
to another group of functional constructs. In figure 3.1 on page 66, for example, the groups of the
painting with caption (5,6) and the group formed by the explanatory text with title (2,3) are re-
lated because the painting illustrates the concept of genre painting discussed in the text. Finally,
the title above the multimedia document (1) relates to all media items in the document. Again,
the layout details that determine how these relations are conveyed to the user are to be made
explicit in the style sheet. On the document level, functional constructs are needed to express the
hierarchical relations described above.

Authors of both text-based documents, as well as multimedia documents, structure the dis-
course of a document according to the premises that a reader “understands” the part of the doc-
ument that she read so far, and is unaware of the function of the remaining part3. Text-based
documents as well as multimedia documents typically have linear or at least partially ordered dis-
course structures. Subsequently, the vocabulary used to express the structured document should
be able to express the order of functional constructs.

Sub-Requirement 9.2 (EXPRESS ORDER). The vocabulary used to denote the structured docu-
ment should be able to express order between functional constructs.

The ALTERNATIVE FORMATTING (#8/p.63) requirement states that a formatter should try
alternative formatting in the case of a formatting failure. Compared to the formatting algorithms
available for text, the ability to adapt the form of a media item while preserving the intended
function is relatively limited. To compensate for formatting failures, it is therefore sometimes
necessary to suppress part of the structured document. The represented function will thus be
altered by omitting part of the structured document, and the distortion compared to the original
represented function should be minimized. Therefore the relative importance of a functional
construct to the document function should be made explicit.

Sub-Requirement 9.3 (EXPRESS PRIORITY). The vocabulary used to denote functional con-
structs should be able to express the relative importance of the functional construct with regard
to the document function.

Priorities are less apparent in text-based documents. However, for some constrained docu-
ments, for example newspaper articles, writing styles exist that consider priorities. Newspaper
articles are typically written in “inverted pyramid” style. This ensures that the most important
part of the function is presented first. In this way an article can be cut at the end of any paragraph
while ensuring that the most important part of the article has been conveyed. Note that priority is
not the same as order. For example, in a document presenting the paintings created by an artist,
the paintings can be ordered chronologically by date of creation. This order most likely does not
correspond to the order of the most significant works of the artist.

3.4 Form vocabulary
A document engineering model generates the document form based on a specification in the
stylesheet (and a structured document). The form vocabulary should therefore be sufficiently
expressive to specify the form that conveys the function associated with a form convention.

3Hyperlinks provide multiple ways to traverse a document. It is, however, the responsibility of the author
that the discourse can be interpreted as a coherent structure.

3.4. FORM VOCABULARY 65

In addition, a form vocabulary allows a designer to represent the form of a document while
abstracting from the irrelevant procedural knowledge necessary for constructing the document
form. This may include command codes that are sent to a printer, or the rendering instructions
that activate the pixels of a screen.

A form vocabulary should thus be sufficiently expressive to allow a designer to represent the
document function through form. However, it should abstract from irrelevant procedural details
to produce the document form.

Requirement 10 (FORM VOCABULARY). The vocabulary used to describe form should, on the
one hand, be sufficiently expressive to describe form constructs that convey the intended function.
On the other hand, the vocabulary should abstract over irrelevant details of the production of
the document form.

Examples of form vocabularies for text-based documents include XSL-FO and TEX (see
section 2.1.3). Similarly, the Amsterdam Hypermedia Model (AHM) is a form vocabulary for
multimedia documents (see section 2.1.2).

The author of a text-based structured document is typically unaware of the form vocabulary,
which is hidden in a stylesheet, and focuses on the authoring of the structured document. In
contrast, the author of a multimedia document typically uses the form vocabulary as the authoring
vocabulary (e.g. SMIL). We consider this situation as illustrative for the absence of document
engineering technology for multimedia documents. The more detailed requirements on form
vocabulary in the remainder of this section are derived from the AHM. However, since we
exclude support for authoring convenience, the requirements presented here are simpler than
those specified by the AHM. Furthermore, the AHM is not concerned with potential formatting
failures. In order to satisfy requirement RESPECT CONSTRAINTS (#4/p.60) we therefore specify
additional requirements on the form vocabulary that are absent in the AHM.

3.4.1 Representing form
Figure 3.1 presents a screen shot of a multimedia document about the concept “genre painting”
in the work of the painter “Vermeer”. The image of “The Kitchen Maid” (6), is used by the
multimedia author as one of multiple illustrative examples of this concept, which are presented
in sequence. We use this figure to illustrate the required expressive ability to represent function
through form.

Recall that part of the document function is represented by media items in a structured doc-
ument. For example, the author of the Vermeer presentation portrayed in figure 3.1 selected an
image of the painting “The Kitchen Maid” to represent part of the function of the multimedia
document. The image (6) in figure 3.1 conveys the function represented by the originally se-
lected image. Although the media items may look identical, the image in the document form is
actually the result of a transformation that scaled down the image.

A media item in the structured document is represented by a, possibly transformed, media
item in the document form. The form vocabulary should therefore be sufficiently expressive to
represent a transformed media item.

Sub-Requirement 10.1 (MEDIA ITEM). The vocabulary used to describe document form should
be sufficiently expressive to represent media items.

The caption text, (5) in figure 3.1, is associated with the image (6). This is conveyed by the
position of the caption in relation to the position of the image. In addition to the positioning of

66 CHAPTER 3. REQUIREMENTS

Figure 3.1: Screen shot of a multimedia document about genre paintings and Johannes Vermeer.
(Numbers in brackets are used for future reference.)

media items, layout is also used to specify composite regions in a multimedia document. For
example, the image (6), its caption (5) and the navigational arrows (7 and 8) belong together,
which is expressed by defining a region that “contains” these media items. These examples
illustrate that the layout of a multimedia document can convey part of the document function.
Therefore, the form vocabulary should be able to specify the layout in sufficient detail that all
layout decisions that may impact the form have been made during the transformation phase, and
need not be deferred to the rendering phase.

Sub-Requirement 10.2 (LAYOUT). The vocabulary used to describe form should be sufficiently
expressive to describe the layout of a multimedia document.

The title (2) and the paragraph (3) are both textual media items. They have a different
function though, which is indicated by the use of a larger font for the title. This is an example of
how the style of a multimedia document may convey part of the document function. Therefore,
the form vocabulary should be able to represent styling properties.

Sub-Requirement 10.3 (STYLE). The vocabulary used to describe document form should be
sufficiently expressive to denote styling properties.

Hyperlinks may also influence the reader’s perception of a document, and may even be used
as a means to convey document function. For example, the hyperlinks attached to the media
items (7) and (8) in figure 3.1 may be used to proceed to the next example painting, or go back

3.5. PRACTICAL REQUIREMENTS 67

to the previous one, which conveys the chronological ordering between the example paintings.
Therefore, the form vocabulary should be sufficiently expressive to represent hyperlinks.

Sub-Requirement 10.4 (HYPERLINKS). The vocabulary used to describe document form should
be sufficiently expressive to denote hyperlinks.

3.4.2 Form properties to detect constraint violations

As stated by requirement RESPECT CONSTRAINTS (#4/p.60) the form of a multimedia document
should respect the constraints imposed by the delivery context. In order to detect constraint
violations the formatter needs to be aware of the properties in the document form that may cause
constraint violations. Therefore these properties should be made explicit.

Requirement 11 (FORM CONSTRUCT PROPERTIES). The properties in the document form that
may cause a constraint violation should be explicitly described.

Typically the properties that may cause constraint violations refer to the spatio-temporal
resources used in the document form. However, the delivery context may constrain other prop-
erties, such as available bandwidth or color capabilities. In order to respect such constraints, the
corresponding properties in the document form should be made explicit.

3.5 Practical requirements

The requirements for an extended document engineering model we derived in the previous sec-
tions abstract from the formatter that will implement the model. The document engineering
model that fulfills these requirements is, therefore, independent of the technology used to imple-
ment the formatter, which is an important property of a document engineering model. However,
there are practical concerns that we should take into account for a successful document engi-
neering system. These include requirements to optimize resource reuse and the ability to use the
formatter in a web context.

3.5.1 Optimize for reuse

In the previous chapter we discussed SRM-IMMPS, which is a reference model for systems
that automatically generate multimedia documents. As mentioned, a practical concern of these
systems was the extensive amount of explicit knowledge necessary to automatically generate a
multimedia document. Typically this requires significant investment in human resources, which
is only viable in very specific contexts. The SRM-IMMPS acknowledges this and proposes
the use of an open architecture to address the extensive knowledge requirements. Although
the objectives of the systems in SRM-IMMPS are more ambitious, the knowledge requirements
are typically higher compared to traditional document engineering systems (see section 1.1.2).
In order to make document engineering viable for general use cases, the required knowledge
investment should be decreased by reusing and preserving the available knowledge and media
items. Note that reuse cannot be enforced as a requirement as it is dependent on the commitment
of the user. Instead, we make a requirement that optimizes the model to support reuse.

68 CHAPTER 3. REQUIREMENTS

Requirement 12 (OPTIMIZED FOR REUSE). Metadata made available for the transformation
should be optimized in such a way that it may be reused for future transformations (and po-
tentially other purposes). In addition, the model should be sufficiently flexible to reuse existing
metadata that was originally created for other purposes.

Although this is a practical requirement, it still affects the way the model needs to deal with
metadata in the associated vocabularies. For example, if only the resulting document form is
sent to the client, this document form needs to include the metadata in order to allow other
applications to make use of it. This is in contrast to the traditional approach, where multimedia
presentation formats contain little or no metadata.

3.5.2 Web compliant
The web is a medium many people have access to. Since their delivery contexts are highly hetero-
geneous, document engineering is especially desirable in a web context. Therefore, a document
engineering system should be applicable on the web and comply to the (REST) architecture of
the web (see section 2.3.1).

Requirement 13 (WORLD WIDE WEB). The architecture of an extended document engineering
system should comply with the Representational State Transfer (REST) architecture used for the
World Wide Web.

Note that this is a requirement on the architecture of an extended document engineering
system, whereas the previous requirements were on the model of a document engineering system.

From a document engineering perspective, the web physically separates the author’s (i.e.
server) structured document from the document form the reader (i.e. client) perceives. The trans-
formation from a structured document to its corresponding document form is therefore necessar-
ily split between an independent server and client. Therefore, the communicated data structures
between client and server should conform to a common standard that is shared by both server
and client.

Typically, for text-based documents on the web the structured document (e.g. HTML) and
the stylesheet (e.g. CSS) are standardized. A client-browser requests the structured document
and stylesheet from a server and generates the corresponding document form in an internal
representation format. This architecture has the advantage that the transformation, which is a
computationally intensive step, is performed client-side. Consequently, the load on the server is
reduced, which is desirable in a centralized server architecture, such as the web.

However, for multimedia documents this architecture is practically infeasible because the
existing standardized vocabularies for structured documents and stylesheets do not account for
potential formatting failures. In order to adopt a similar client-side formatting architecture for
multimedia documents, standardized vocabularies for structured document and stylesheet should
be available. Since we do not expect this be a realistic assumption in the near future, we assume
that multimedia documents are formatted server-side.

However, this assumption has consequences for the architecture of a document engineering
system that includes multimedia documents on the web. Since the stylesheet is processed server-
side it does not need to be standardized in a server-side transformation architecture. However,
in this case, the delivery context, which defines the constraints of the presentation environment,
should be sent to the server. Since client and server are independent the delivery context should
be communicated to the server in a commonly accepted format.

3.6. CONCLUSION 69

Sub-Requirement 13.1 (DELIVERY CONTEXT FORMAT). The delivery context should be com-
municated to the server in a commonly accepted format.

Although few client applications currently sent the properties of the delivery context to the
server, there are working groups in W3C, notably the Ubiquitous Web Applications (UWA) [72],
that actively develop recommendations to describe the delivery context, such as Delivery Context
Client Interfaces (DCCI) [158] and CC/PP [90].

Besides the delivery context, the document form should also be represented in commonly
accepted presentation format.

Sub-Requirement 13.2 (PRESENTATION FORMAT). The representation of the document form
produced by the server should conform to a commonly accepted presentation format.

There are currently a number of standardized presentation formats available to describe a
document on the web, including (X)HTML, SMIL and SVG4. Besides the “official standards”
there are also proprietary standards such as Flash [100] that are commonly used.

3.6 Conclusion
In this chapter we derived requirements for an extended document engineering model. These
include requirements derived from the traditional document engineering model. However, the
traditional model assumes generally applicable overflow strategies, which is not the case for
multimedia documents. Therefore, the formatting of multimedia documents may, in contrast
to text-based documents, fail. An extended document engineering model should thus detect
constraint violations and propose alternative formatting when necessary.

The knowledge necessary for detecting and resolving constraint violations should be made
explicit in an extended document engineering model. This includes explicit knowledge on the
properties of the delivery context and form constructs that are relevant for detecting constraint
violations. As a result, the knowledge requirements in an extended document engineering model
are significantly larger compared to traditional document engineering. To reduce the associ-
ated costs, an extended document engineering model should support reuse and preserve existing
knowledge where possible.

Since document engineering is especially desirable in a web environment, we derived prac-
tical requirements for a system that implements the extended document engineering model in a
web environment.

In the next chapter, we will discuss a document engineering model that is based on the
requirements presented in this chapter. As in this chapter, we will use the traditional model
as the basis, and emphasize the additions and changes that are needed to support multimedia
documents, such as the handling of media items, the explicit representation of the constraints
imposed by the delivery context, and the explicit representation of alternative style rules to handle
situations where the primary formatting rules would result in a violation of these constraints.

4The World Wide Web Consortium (W3C) refers to the standards developed within the W3C as “recom-
mendations”. This is to emphasize the open character of the web.

70 CHAPTER 3. REQUIREMENTS

Chapter 4

A document engineering model for
multimedia documents

The document engineering paradigm separates authoring effort from design effort with the intent
to reuse parts of the authoring and design process and consequently reduce the cost of producing
documents. Based on the requirements derived in the previous chapter, this chapter presents a
model that extends the traditional document engineering model to make it applicable to multi-
media documents.

The model presented here abstracts from the technical details of the software architecture im-
plementing the model. This allows the technology used to implement the model to be optimized
for a particular architecture. Furthermore, abstracting from technical details allows comparison
to related document engineering models, which we use to draw parallels and clarify significant
differences. In the following chapters we use the model as a reference to illustrate and clar-
ify the implementation choices we made to implement and evaluate our document engineering
framework.

We first model the document engineering paradigm, which is described in section 4.1. The
subsequent three sections model the vocabularies used to represent design effort (section 4.2),
the authoring effort (section 4.3), and document form as perceived by the reader (section 4.4).
We conclude in section 4.5 by discussing the pros and cons of our model.

4.1 Modeling the document engineering paradigm
The requirements we derived in the previous chapter largely correspond to the requirements for
a traditional document engineering model (see section 3.1). Therefore we base our extended
model on the traditional document engineering model.

The main top-level concepts of our model are shown in figure 4.11.

1The diagram presented in figure 4.1 is the first of a number of diagrams we use in this chapter to illustrate
our model. The diagrams are expressed using UML class diagrams notation [116]. The boxes (classes in
UML), such as document form, represent concepts in the real world. The name of a concept is presented on
top, using a bold font (italics means that the concept is abstract and has no instantiations). Within the concept,
attributes and operations are expressed that define the concept. Relationships between concepts are expressed
by drawing a line between them. We use four types of lines in our diagrams. A plain line denoting a relationship

71

72 CHAPTER 4. MODELING

Gray boxes refer
to relevant concepts
that fall outside the
scope of the model.

Schema document

Rendering of the
document form

Document form

+ inscription :Inscription
+ metadata :String [*]

Structured document

Stylesheet

cd: Document engineering basics

1..*

1..*

apply

1..*

convey
1..*

produce

Delivery context

+ document :Structured document
+ stylesheet :Stylesheet
+ stylesheet

parameters
:Tuple [*]

+ constraint
properties

:Tuple [*]

Document function resides in the mind of
the author and represents the message
she intends to convey using the document.

Document function

The rendered document represents the
runtime manifestation of the document
form that is perceived by the reader.

*
represent manifestation

*

aware

*
conforms

*
constraint

1..*
represent

A form convention resides in the
mind of a stylesheet designer who
is aware of the form conventions
used within a community.

Form convention

A tuple is a key with
associated value.

Figure 4.1: The document engineering paradigm separates authoring effort, represented by a
structured document, from design effort, represented by a stylesheet. Based on a structured
document and a stylesheet, the document form, which represents the document perceived by the
reader, is automatically adapted to the delivery context of the reader.

Analogously to the traditional document engineering model, we represent authoring ef-
fort (i.e. document function) in a structured document (requirement STRUCTURED DOCUMENT
(#2/p.58)) and design effort (i.e. form conventions) in a stylesheet (requirement STYLESHEET
(#3/p.59)). A stylesheet is used to transform a structured document to its corresponding docu-
ment form, which, after rendering, is presented to the reader. Note that the relationships, convey,
apply and produce in figure 4.1 are relationships that do not need to be made explicit a priori.
This allows multiple stylesheets to transform a structured document, and multiple structured doc-
uments can be transformed by a single stylesheet (indicated in figure 4.1 by UML multiplicity

between two concepts (association in UML). A line with a diamond on one side denotes a part-of relationship.
If the diamond is closed it means one concepts only exists if the other concept exists (composition in UML).
If the diamond is open it means both concepts can live independently (aggregation in UML). All relationships,
except is-a, have associated multiplicity. The default is 1, * denotes zero or more, 1..* denotes one or more.
The dog-eared boxes denote informal comments.

4.1. MODELING THE DOCUMENT ENGINEERING PARADIGM 73

constraints). However, for reusing design effort the prerequisite is that the authored structured
document is a member of the class of structured documents that may be transformed by a par-
ticular stylesheet. Similarly, for reusing authoring effort the stylesheet should be a member of
the class of stylesheets that may be used to transform a particular structured document. We
represent this agreement between author and designer in our model by a schema document (re-
quirement SCHEMA DOCUMENT (#1/p.58)). However, similarly to the traditional model, the
schema document does not necessarily need to be made explicit.

While there are similarities between the traditional model and the extended document en-
gineering model, there are also important differences. These differences we describe in more
detail in the remainder of this section. Notably, in contrast to the traditional model, we explicitly
represent the constraints imposed by the delivery context, whereas the traditional model abstracts
from constraint resolution. Additionally, the traditional document engineering model ignores the
role of metadata associated with function and form, whereas we model metadata explicitly.

4.1.1 Scope of the model
The gray areas in figure 4.1 specify relevant concepts that intentionally fall outside the scope
of the model, but are nevertheless important to define the borders of the model. A the top left,
the document function represents the message an author intends to convey as it resides in the
mind of the author. To the right, the rendering of the document form represents the manifestation
of the document form as the reader perceives it. In the lower middle part of the figure, the
form conventions represent the conventions (shared within a community of people) that enable
communication. Although these concepts fall outside the scope of the model they denote the
extreme states in the process of communicating a message from author to reader. Intuitively, the
document engineering process “happens” in between those extreme states.

Both our and the traditional model describe an abstract, single transformation, while in prac-
tice document formatting typically involves multiple transformations, implemented by a trans-
formation chain (see chapter 2, page 29). We will, however, discuss transformation chains ex-
tensively in the following chapters.

4.1.2 Explicit modeling of delivery context
The document form in figure 4.1 models the entire artifact that is perceived by the reader. We
follow the distinction between medium and inscription discussed in chapter 2 (see page 30). In
our model, the inscription will represent the result of the document transformation, and will be
discussed in more detail later.

The medium has an important influence on how the document function needs to be conveyed
by the document form. The document form needs to be able to be perceived on the specific
hardware the reader uses, and typically needs to match various constraints related to screen size,
color capabilities of the device and the bandwidth of the connection. Further constraints may
be related to the specific requirements of the reader, and may address her language preferences,
accessibility constraints or level of expertise.

We model this set of potential constraints as the delivery context2. In the traditional docu-
ment engineering model, the delivery context is not made explicit. There, the delivery context is
considered to only become relevant in the last transformation, from document form to rendering

2Our use of the term delivery context is in line with the use of the same term by the W3C Device Indepen-
dence Working Group [153].

74 CHAPTER 4. MODELING

of the document form. During this transformation, text-flow algorithms, such as hyphenation and
kerning, calculate the position of each glyph with respect to the delivery context (i.e. medium).
However, these algorithms do not significantly alter the document form and therefore they are
considered to be outside the scope of the traditional model. In contrast, our requirement DELIV-
ERY CONTEXT (#5/p.60) states that the delivery context in an extended document engineering
model should be made explicit as a formatter for multimedia documents needs to check whether
the document form satisfies the constraints imposed by the delivery context. We thus model the
delivery context explicitly, as shown in figure 4.1. The delivery context’s constraint properties
refer to a list of properties that are directly relevant to determine potential constraint violations.
This list may include properties that describe the capabilities and limitations of a device, or
properties that describe user preferences that are relevant for accessibility constraints.

4.1.3 Explicit parametrization of the style sheet
In contrast to the structured document and the stylesheet, the delivery context models the reader’s
influence on the document transformation. The relationships apply, convey and produce, of
which further details are intentionally undefined, are only instantiated once the delivery context
is known. We model the instantiations of these relationships by the properties structured docu-
ment and stylesheet in the delivery context in figure 4.1. One can argue that the designers should
develop a stylesheet for every potential delivery context, and the reader then only needs to spec-
ify the structured document and the stylesheet that fit her delivery context. This is indeed the
approach taken by HTML and CSS. The document form is adapted on the basis of a stylesheet
that the reader selects. Typically these stylesheets are provided by the author, although a reader
can provide her own. However, there are serious disadvantages with this approach when it is
applied to multimedia documents. Since many properties of the delivery context may impact the
document form, each valid combination of these properties could require a different stylesheet.
The number of required stylesheets could easily grow exponentially with the relevant properties
of the delivery context the form should adapt to.

Therefore, more advanced text-based document engineering technology provides mecha-
nisms to parametrize the style sheet, where the values of these parameters represent important
information from the delivery context. Based on these parameters the stylesheet then adapts the
transformation process dynamically. Similarly, we model the parametrization of the stylesheet
by including parameters in the delivery context. In contrast to constraint properties, which will
eventually need to be standardized, the set of supported parameters are determined during au-
thoring time by the author and designer, and the reader and her delivery context may influence
the values of these parameters in various ways at run time.

4.1.4 Explicit modeling of metadata
In order to reduce the extensive knowledge requirement inherent to multimedia data and to make
the document engineering paradigm viable to multimedia documents, reuse of knowledge is es-
sential, as stated by requirement OPTIMIZED FOR REUSE (#12/p.67). The extended document
engineering model therefore explicitly models metadata in the document form (See figure 4.1).
Because metadata may be dynamically and incrementally added during the transformation pro-
cess, it is not only present in the resulting document form, but occurs in multiple places in the
model.

Note that although our model explicitly includes metadata, in practical implementations the
propagation of metadata still depends on the properties of the final format document.

4.2. MODELING THE STYLESHEET 75

A descriptor specifies
the form constructs that
conveys the selected
functional construct.

A selector may select
any subset of functional
constructs

Inscription

cd: Stylesheet

Functional construct

Stylesheet

Style rule

+ fail :Boolean = false
+ priority :int
+ metadata :Tuple [*]

Form construct

Structured document

1..*
partition 1..*

partition
1..*

partition

**

Selector

*

Descriptor
*

*

apply

Figure 4.2: A stylesheet is a collection of style rules that describe form conventions. A style
rule specifies a selector, which selects functional constructs, and a descriptor, which specifies
the form construct used to represent the selected functional construct. Greyed class boxes denote
classes that were previously introduced.

4.2 Modeling the stylesheet

Analogously to the traditional document engineering model, the result of the design effort is for-
malized by a stylesheet. In this section we model the vocabulary used to represent the stylesheet.

Requirement STYLE RULE (#6/p.61) states that a stylesheet vocabulary should be sufficiently
expressive to represent form conventions. Similarly to the traditional model we represent form
conventions by style rules. A style rule selects zero or more functional constructs from a struc-
tured document and produces the corresponding form construct, which is part of the inscription
of the document form. This is illustrated in figure 4.2 by a selector, which is associated with the
relationship between a style rule and a functional construct3.

Since a style rule may be independent of a structured document, its selector should be suf-
ficiently expressive to select any subset of functional constructs from a structured document as
stated by requirement EXPRESSIVE SELECTOR (#6.1/p.61). An expressive selector vocabulary
is especially important for the reuse of style rules as it allows a designer to formulate the bulk
of the transformation in a style rule with a broad scope, while the formatting exceptions may be

3In UML, properties of a relation may be represented by an associated class, indicated by a dashed line
between the associated class and the relation. Note that the arrow is directed from ‘Style rule’ to ‘Functional
construct’. This denotes that, provided that a relationship exists, an instance of a ‘Style rule’ has access to the
public properties of an instance of a ‘Functional construct’, whereas the reverse is not possible. As a result, the
‘Selector’ is typically implemented as part of the ‘Style rule’.

76 CHAPTER 4. MODELING

expressed by a style rule with a specific scope4. In our model we abstract from the specifics of
a selector vocabulary and the resolution strategy that selects the style rule that is applied. This
allows the model to be used for stylesheet vocabularies with different expressive properties, such
CSS and XSL(T) for text-based documents.

A style rule produces zero or more form constructs that represent the selected functional
constructs. The specification of the produced form constructs is specified by a descriptor as
represented in figure 4.2. Similar to the selector of a style rule, the descriptor may be independent
of a structured document. Again, we abstract from the details of the descriptor vocabulary, and
only state it should be sufficiently expressive to describe the inscription to be generated (per
requirement EXPRESSIVE DESCRIPTOR (#6.2/p.61)). Finally, a designer may associate metadata
with a style rule. As in the traditional model, the metadata may be used to control the application
of style rules (e.g. “named templates” in XSL(T)), but the metadata associated with a style rule
may also be used to annotate the inscription for further processing.

In contrast to the traditional model, a transformation in the extended document engineering
model may fail, as indicated by the Boolean fail property, which indicates whether a style rule
failed to successfully complete its transformation. In the remainder of this section we further
elaborate on the differences compared to the traditional model. These include multiple default
styles to transform multiple media types and the detection and resolution of potential formatting
failures. Furthermore, we discuss the pros and cons of modeling soft constraints in addition to
hard constraints.

4.2.1 Multiple default style rules
Recall that a structured document only partially abstracts from the document form, but not com-
pletely (see section 4.1). Consequently, the part of the function that remains explicit in a struc-
tured document is expressed only through form. For example, in the traditional document en-
gineering model, the function of a figure in a structured document often remains implicit and is
expressed only through its form. Note that the corresponding figure in the document form need
not be identical to the figure in the structured document, as it may have been transformed (e.g.
through scaling or rotation, color mapping etc.).

For our extended model, part of the document function is expressed through media items.
Typically, the function of these media items is at least partially implicit to the formatter. As
a result, a media item can be included as functional construct although it represents form. As
with figures, a media item representing a form construct may appear differently compared to its
corresponding media item representing a functional construct because of the application of style
attributes, such as scaling or cropping.

In figure 4.2 we define that a stylesheet has at least one style rule. This corresponds to re-
quirement DEFAULT STYLE RULES (#7/p.62), which states that there should be a default style
rule that defines the transformation if no other style rule applies. For text-based documents this
is typically the generic style rule that applies text formatting algorithms, such as pagination,
hyphenation and kerning. However, since media items in a multimedia document may use inher-
ently different modalities (e.g. image, video, audio), a single transformation rule for multimedia
documents is insufficient. Therefore, a formatter that implements the extended document engi-
neering model requires more then one default style rule. In contrast to the traditional text-based
model, the modality of the media item thus needs to be made explicit (see section 4.3).

4UML lacks a means of formally representing such constraints. Instead they may be informally represented
within the class diagram by comment notes, as we do in figure 4.2.

4.2. MODELING THE STYLESHEET 77

Delivery context

+ maxWidth :int
+ maxHeight :int
+ maxDuration :int
+ constraint

properties
:Tuple [*]

Constraint

+ fail :Boolean = false

Style rule fails if one
of the constraints fail.

Style rule

+ fail :Boolean = false

Form construct

+ constraint
properties

:Tuple [*]

+ metadata :Tuple [*]

cd: Constraint

*

Descriptor

*

specify

1..*

*

apply

1..*

specify

Figure 4.3: Style rules impose constraints on form constructs to convey document function
whereas the delivery context imposes constraints to ensure a document can be played within
the environment of the reader.

4.2.2 Detecting constraint violations

The RESPECT CONSTRAINTS (#4/p.60) requirement explicitly states that an extended document
engineering model should respect the constraints imposed by the delivery context. Although this
requirement is often implicitly assumed in the traditional model, there is no generic resolution
strategy in the case of a constraint violation. Therefore, in the extended model it should be
possible to detect constraint violations and provide alternative formatting as stated by require-
ment ALTERNATIVE FORMATTING (#8/p.63). Figure 4.3 illustrates the explicit specification
of constraints on the formatting of a form construct. A constraint specifies conditions that the
formatter needs to respect in order to successfully format the document form. Constraints are
specified by the delivery context and the descriptor of a style rule.

The constraints imposed by the delivery context ensure that the document can be presented
in the environment of the reader. These minimally include the three spatio-temporal resource
constraints, as indicated by maxWidth, maxHeight and maxDuration, but may also include other
types of constraints such as user or device constraints. Note that these resources are maximum
values, typically imposed by the constraints of the hardware, the actual dimensions of the form
constructs may be smaller.

Since the type of constraints used may vary between applications, we abstract from exhaus-
tively defining the properties that may be constrained. Instead, we refer to them as general
constraint properties that may be associated with the delivery context and a form construct, as
indicated in figure 4.3. Note that the constraints imposed by the delivery context are known
before the structured document is transformed. Therefore, every form construct is constrained a
priori by the delivery context.

The constraints imposed by the descriptor of the style rule ensure that the function repre-

78 CHAPTER 4. MODELING

sented by a functional construct is conveyed by the associated form construct. If a constraint
fails, which is indicated by the fail property, this implies that the style rule that imposed the
constraint also fails and an alternative style rule should be invoked.

4.2.3 Selecting alternative style rules

Requirement ALTERNATIVE FORMATTING (#8/p.63) states that if a style rule fails to transform
a functional construct, then the constraint resolution strategy of the formatter should invoke an
alternative style rule. While this is not supported by the traditional document engineering model,
most implementations (including CSS and XSLT) support the formulation of multiple style rules
where one can override the other. We represent alternative style rules in the extended model in a
similar fashion. However, the strategy that selects the style rule to execute is more elaborate in the
extended document engineering model. Recall that the scope of a style rule may vary. As a result,
there may be multiple candidates to transform a form construct. In most style sheet applications,
the rule with the most specific selector is executed. In our model, the strategy that selects the style
rule to execute also includes the selection of an alternative style rule if a prior one failed. Note
that the exact strategy to select alternative style rules may dependent on the application, and is
typically influenced by multiple factors, including, aesthetics and performance. In our model we
abstract from defining such a strategy. Nevertheless, the order in which style rules are applied
should be known to the formatter implementing the model. Therefore, we explicitly denote
the order in which style rules are applied by the priority property as indicated in figure 4.2.
Based on the priority order, the formatter selects one of the potential style rules. If this rule
happens to fail, the next potential rule is invoked until a transformation succeeds. Note that the
successful execution of a style rule cannot be guaranteed, as a potential formatting failure cannot
be completely avoided. However, in practice such a failure can often be prevented by generating a
low key presentation reporting the inability to transform the document for the particular delivery
context.

4.2.4 Discussion: soft constraints

A constraint in our extended document engineering model either succeeds, or fails. This suffices
for spatio-temporal resource constraints, such as width, height and duration. However, a designer
may additionally want to express constraints that should be respected if possible, but may fail if
they compromise a successful transformation. We refer to them as soft constraints. Typically,
soft constraints address the aesthetic quality of the document form. For example, in text-based
document engineering, the distribution of white-space influences the perceived aesthetic quality
and clarity of a document. Likewise, the first sentence of a paragraph presented as the last
sentence on a page (i.e. an orphan) is considered bad typography and should be prevented, if
possible. Most text-based formatters attempt to format the document in such a way that the
soft constraints are respected whenever possible. Note that soft constraints may be (partially)
contradictory. In such cases the formatter attempts to find a compromise. In TEX, for example,
the compromise is expressed through a “badness” value, which indicates the distance from a
theoretical optimally formatted document.

For multimedia documents, similar soft constraints that optimize the aesthetic quality of the
document apply. Consider, for example, constraints that enforce an aesthetic balance of the form
construct on a page. Or, a constraint that enforces a harmonized color scheme for the form
constructs used in the multimedia document. However, due to the absence of a generic overflow

4.3. MODELING THE STRUCTURED DOCUMENT 79

A functional composite
expresses grouping and
priority relations between
functional constructs.

Root is the top level
functional composite
that has no parent. A functional atomic represents

a media item.

Functional atomic

+ media item :URL
+ modality :string
+ width :int
+ height :int
+ duration :int
+ mime :String

cd: Structured document

Structured document

Functional construct

+ metadata :Tuple [*]

Functional composite

child+

*

parent+

Group
 parameters

+ order :int
+ priority :int

root+

Figure 4.4: In a structured document function is either explicitly described in a functional com-
posite or implicitly represented by a functional atomic.

strategy, soft constraints for multimedia documents are to be expressed by the designer as part
of the stylesheet. This includes defining priorities between soft constraints so that the formatter
optimizes the multimedia document in accordance with the intention of the designer5.

Soft constraints thus complicate significantly the authoring of a stylesheet, as a designer
needs to deal with both the authoring of alternative formatting rules and the optimization of soft
constraints. In addition, soft constraints significantly increase the computational complexity for
the formatter implementing the model. For these reasons we exclude soft constraints from the
model. As a result, the means to optimize the formatting of multimedia document for aesthetic
quality are limited.

4.3 Modeling the structured document

Similar to the traditional document engineering model we represent authoring effort in a struc-
tured document. As stated by requirement FUNCTIONAL VOCABULARY (#9/p.63), the vocabu-
lary used to represent the structured document should, on the one hand, abstract from the docu-
ment form, and on the other hand be sufficiently expressive to allow an author to represent the
document function she intends to convey.

5Designers typically need to balance multiple interests, including those of the author, content provider,
designer and user.

80 CHAPTER 4. MODELING

In this section, we describe the structured document, illustrated by a UML diagram in fig-
ure 4.4. We first describe the explicit representation of media items in a structured document,
which clarifies the classes functional composite and functional atomic. Subsequently we elabo-
rate on the functional vocabulary, which in addition to grouping and ordering in the traditional
model, also models priorities, which may be used to resolve potential formatting failures.

4.3.1 Explicit representation of media items
Recall that document function may be represented either explicitly, or implicitly through a me-
dia item. In figure 4.4, we represent functional constructs that represent function explicitly by
functional composites whereas functional constructs that represent function implicitly through
media items are represented by functional atomics. Note that both functional atomics and func-
tional composites are modeled as subclass of functional constructs6, which means that they are
a special type of functional construct.

To avoid the complexities of modeling media content, we assume atomics refer to their media
content by the media item URI. Modeling direct embedding of media items in the structured
document may be achieved by using data URLs [104].

In contrast to the traditional textual model, functional constructs that represent function im-
plicitly also require metadata. For example, the generic style rules for multimedia documents
require at least the associated modality of the functional construct in order to invoke the appro-
priate default style rule. Therefore, independently of whether document function is represented
implicitly or explicitly, in our model we associate metadata with a functional construct, as il-
lustrated in figure 4.4. Here, metadata refers to the complete set of metadata associated with a
functional construct.

In this context, it is important to clarify that in our model, explicitly described document
function refers to metadata associated with a functional construct that allows a style rule to for-
mat it appropriately. However, metadata does not necessarily need to be embedded in the struc-
tured document, as is typically the case in the traditional textual model, but may be accessed from
external resources. This facilitates reuse of existing metadata as specified by requirement OPTI-
MIZED FOR REUSE (#12/p.67).

Requirement FORM CONSTRUCT PROPERTIES (#11/p.67) states that the form properties that
may cause constraint violation should be explicitly described. Therefore, the width, height and
duration of the media item are made explicit. Note that these are the intrinsic width, height and
duration associated with the media item. These may be changed by styling effects such as scaling
and cropping and therefore are not necessarily identical to the width, height and duration of the
resulting form construct. Futhermore, the MIME type is nessecary to detect whether the format
of a particular media is supported by the delivery context. Note that the MIME type of a media
item does not not nessecarily specify the modality as it is possible that a media item with the
image/jpeg MIME type portrays text.

4.3.2 Representing grouping, ordering and priorities
Requirement EXPRESS GROUPING (#9.1/p.63) states that the vocabulary used to represent a
structured document should be able to denote groupings of functional constructs. Similar to the
traditional document engineering model, we model grouping by a containment hierarchy. As
a result, a functional composite may be the parent of multiple functional constructs (functional

6Subclass relationships are represented in UML by an open arrow.

4.4. MODELING THE DOCUMENT FORM 81

atomics and/or functional composites). The common ancestor of all functional constructs in the
document is the functional construct at the top of the containment hierarchy, denoted as the root
functional construct. In figure 4.4, the root attribute represented in the structured document,
refers to the root functional construct and (implicitly) to all its descendants. A containment
hierarchy has certain computational advantages since a branch can be processed independently
from the rest of the tree. However, a tree structure does not necessarily result from the derived
requirements and is in some cases too restrictive. For example, consider a two dimensional table.
Every cell in a table is part of its row and of its a column. This cannot be expressed in a tree
structure since it would require a cell to have two parents, which is not possible. Text-based
document engineering technology circumvents this limitation by associating metadata with a
functional construct to denote its membership to a group (e.g. in CSS class=‘‘column1’’).
In our extended document engineering model we adopt a similar approach.

Requirement EXPRESS ORDER (#9.2/p.64) states that the vocabulary used to represent a
structured document should be able to represent ordering between functional constructs. This
corresponds to the text-based model where ordering is implicitly represented by the order of the
text within the structured document. We adopt a similar approach for our extended document
engineering model and assume the specified order of the children of a composite to be the main
ordering of the content. If necessary, alternative orderings may be represented by associated
metadata.

Finally, requirement EXPRESS PRIORITY (#9.3/p.64) states that the vocabulary used to rep-
resent a structured document should be able to represent priorities. Prioritizing functional con-
structs is necessary in case the formatting of a multimedia document fails and a functional con-
struct needs to be omitted. The traditional model does not require functional constructs to have
associated priorities since the formatting is guaranteed to succeed. We model priorities as part
of the parent-child relationship (i.e. every parent-child relation has an associated order and an
associated priority). As a result, priorities are defined within the scope of their parent. This
has the computational advantage that a functional construct may be omitted without affecting
other functional constructs outside the scope of the parent. For this reason we disallow removing
functional constructs outside the scope of the parent, although an author may consider them less
important than the least important functional construct within the scope of the parent.

4.4 Modeling the document form
Loosely speaking, the document form is automatically generated based on the application of a
stylesheet to a structured document. Recall that the document form consists of a medium, de-
fined by the delivery context and the inscription, which represents the document function as rep-
resented by the structured document. Since the medium is beyond the control of the author and
designer it is more correct to state that the inscription is automatically generated, and our form
vocabulary is used to represent the inscription. In this section we present our form vocabulary
that is based on the Amsterdam Hypermedia Model (AHM), which is an authoring vocabulary
for multimedia documents. Figure 4.5 presents a graphical representation of the vocabulary’s
form constructs in UML.

According to requirement FORM VOCABULARY (#10/p.65), the vocabulary to describe doc-
ument form should be sufficiently expressive to represent form conventions, and abstract from
insignificant formatting details.

More specifically, requirement STYLE (#10.3/p.66) states that the vocabulary should be suf-
ficiently expressive to describe the styling of a multimedia document. We model this by as-

82 CHAPTER 4. MODELING

A form construct can
have an associated
hyperlink. Link specifiers
define additional
behavioral information
for a hyperlink.

Style defines a list of properties that specify
perceivable characteristics of a form construct.

A form composite defines a
three dimensional region that
contains all of its children.

A form atomic defines a three
dimensional region that contains
 a media item.

Inscription

Form construct

+ x1 :int
+ y1:int
+ t1 :int
+ width :int
+ height :int
+ duration :int
+ z−order :int
+ metadata :Tuple [*]

A form construct defines
a three dimensional region
that is possitioned relative
to the inscription. Z−order
defines the presentation
order in case of spatial
overlap.

Hyperlink

+ target :URL
+ specifiers :Tuple [*]

Form composite

Style

+ properties :Tuple [*]

Form atomic

+ mime :String
+ url :URL

cd: Form construct

parent+

child+

*containment

target+

anchor+

root+

Figure 4.5: A form construct defines a three dimensional region that is used as a building block
for describing the inscription of a multimedia document.

sociating a list of style properties with a form construct. Note that, similar to the AHM, we
abstract from specifying style attributes because the specifics of style attributes may depend on
the specific presentation format used to communicate the document form. However, typical style
attributes used in multimedia documents would include color, font and transition effects.

Furthermore, the HYPERLINKS (#10.4/p.67) requirement states that the form vocabulary
should be sufficiently expressive to denote hyperlinks in a multimedia document. We model
hyperlinks by associating hyperlink properties with a form construct. The region defined by the
form construct is then interpreted as the anchor of the link. A hyperlink minimally includes a tar-
get, which refers to the referred resource. Furthermore, the link specifiers specify the behavior of
a link. This includes directives whether the link should be opened within the current presentation
or using an external application.

In addition, requirement MEDIA ITEM (#10.1/p.65) states that the form vocabulary should
be sufficiently expressive to denote media items. In our model we represent a media item by a
form atomic, which is a special type of form construct as indicated by the subclass of relation in
figure 4.5. A form atomic contains a URL attribute that refers to the URL of the media item and

4.4. MODELING THE DOCUMENT FORM 83

the MIME type, which indicates the type of the referred media item. The latter is needed for the
renderer of the document to correctly present the media item. Note that a form atomic, like its
corresponding functional atomic, has a MIME type. Typically, the MIME type of the functional
atomic and the resulting form atomic are identical. However, this is not necessarily the case as
the transformation rule may transform the media item. For example, the generic transformation
rule may convert a media item with a MIME type that could not be played in a particular delivery
context to a media item with a compatible MIME type (e.g. text to speech).

In contrast to authoring vocabularies such as the AHM, our form vocabulary abstracts from
the authoring phase. Therefore, we can simplify the form vocabulary compared to an author-
ing vocabulary by omitting support for authoring conveniences. In the remainder of this section
we elaborate on our representation of three dimensional bounding boxes, whereas the AHM
describes the temporal and spatial dimensions separately. Furthermore, we organize form con-
structs in a containment hierarchy, which reduces design effort significantly. However, a contain-
ment hierarchy imposes limitations that in some case may be too restrictive. We discuss these in
the last section.

4.4.1 Three dimensional bounding box

Requirement FORM CONSTRUCT PROPERTIES (#11/p.67) states that the properties of a form
construct that may cause a constraint violation should be explicitly described. This minimally
includes required spatio-temporal resources. Therefore, based on the AHM, we model a form
construct by a three dimensional box-shaped region of which the extents are denoted by width,
height and duration. Additionally, requirement LAYOUT (#10.2/p.66) states that the form vo-
cabulary should be sufficiently expressive to represent the layout of a multimedia document.
Therefore, the position of a form construct with respect to the inscription is denoted by the coor-
dinates x, y and t. Furthermore, the z-order defines the stacking order of form constructs in case
of overlap.

One may argue that a three dimensional, box-shaped region is too restrictive, as regions in
a multimedia document are not necessarily rectangular. For example, vector graphics may be
used to specify graphics that have a different shape. However, since most spatial media items are
rectangular and the computational complexity of detecting spatio-temporal constraint violations
is significantly lower for 3 dimensional bounding boxes, we model regions as three dimensional
bounding boxes. For similar reasons, the model does not support rotation of three dimensional
regions.

In our extended model, the spatial and temporal layout are combined in a form construct,
whereas the AHM (and SMIL) explicitly separate the spatial layout from the temporal layout.
The advantage for an author of separating temporal layout from spatial layout is that the model
allows an author to express that multiple media items are presented using the same spatial region.
As a result, the style attributes associated with a region may be inherited and do not need to be
specified for each individual media item. The disadvantage, however, is that the formatter needs
to keep track of a separate temporal and spatial hierarchy, which complicates the processing
model. Since we automatically generate the document form and we therefore do not need the
manual authoring conveniences provided by the AHM, we use a simplified model that combines
the temporal and spatial layout.

Note that in the perceived form construct the function is represented implicitly, while often it
has been made explicit in the corresponding functional construct and its metadata. This metadata,
such as author and title, that may be used to apply the appropriate style rule, is typically lost in

84 CHAPTER 4. MODELING

the traditional document engineering model. However, requirement OPTIMIZED FOR REUSE
(#12/p.67) states that the extended document engineering model should be optimized for reuse.
Therefore, the extended document model supports the preservation of metadata by explicitly
including metadata within a form construct as indicated in figure 4.5.

4.4.2 Discussion: the containment hierarchy
A form composite is a special type of form construct that contains zero or more form constructs
(which may be form atomics or form composites). Similar to formatting vocabularies such as
TEX and XSL-FO, composites are used to model a strict, single containment hierarchy. This does
not necessarily follow from the requirements derived in chapter 3. To illustrate this, document
formats such as the first version of SMIL [149] do not (fully) use a containment hierarchy to
represent the document form7. However, having a single containment hierarchy significantly re-
duces the complexity for a stylesheet designer, for example the ability to specify relative spatio
temporal constraints that are automatically inherited by its children. In this model, the spatio-
temporal constraints of the delivery context can be imposed on the root form construct, which
represents the form construct that is the predecessor of all other form constructs in the document
form. Since all form constructs are contained within the root, the spatio-temporal resource con-
straints automatically apply to all form constructs in the document form. Likewise, to position a
group of form constructs relative to another group of form constructs, it suffices to constrain the
two bounding boxes that contain the respective groups. Without a strict containment hierarchy,
an explicit constraint specification between all involved form constructs would be necessary.

In addition, a containment hierarchy allows descendants of a form construct to inherit des-
ignated style attributes8. For example, the specification of a background color may be inherited
by the descendants of a form construct, which prevents having to explicitly state the background
color for each individual form construct. Note that CSS lacks explicit form constructs, and style
properties are inherited over the functional construct hierarchy, not over the form construct hier-
archy.

In a strict containment hierarchy, however, a form construct cannot have more then one
parent. As a result, a functional grouping that exists between two form constructs that do not
share a parent is not explicitly representable in the document form. This limitation also applies
to a text-based model and becomes apparent in, for example, the formatting of tables. Typically,
every cell in a table belongs to both a row and column. Based on the contents of the cells, the
width of a column can be determined once the width of all the cells in the column are known.
Similarly, based on the contents of a cell, the height of a row can be determined once the height
of all the cells is known. Clearly, there is a dependency between the width and height of a
cell. However, this dependency cannot be expressed in a containment hierarchy since rows and
columns are orthogonal groups of cells. Instead, most text-based document engineering tools,
such as LATEX, require the author to either fix the width or height of a cell a priori9.

Unfortunately, orthogonal grouping occurs more often for multimedia documents since spatio-
temporal relations between form constructs need to be explicitly expressed. To illustrate this,

7SMIL1 represents only the temporal dimension by a containment hierarchy. Versions after SMIL1, notably
SMIL2 [155], however also include support for a containment hierarchy for the spatial dimensions, although
this is not mandatory.

8Not all style attributes are suited to be inherited. In chapter 5 we elaborate on this.
9Some HTML formatters allow a table to resize already rendered cells while processing the remaining cells.

The assumption, however, is that there are no spatial constraints that require an overflow strategy, such as for
documents that are constrained by the size of a piece of paper.

4.5. SUMMARY AND CONCLUSION 85

Figure 4.6: Bounding-box issue

consider figure 4.6, which shows 4 spatial media items (we omit the temporal dimension), two
large ones (A and D) and two smaller ones (B and C). All images can be presented on the screen
together by putting a large image next to a small image. However, this solution will not be found
if the images A and C, as well as the images B and D are together in a bounding box. Since the
bounding box is as large as its largest child, this model will find no way to present the images on
a single screen.

Although orthogonal groupings can be considered a necessity in a document engineering
model for multimedia documents, the conceptual implications for the model are significant as it
introduces dependencies between transformation rules. For example, the transformation rule that
aligns captions depends on the transformation rule that formats a caption and image. If the first
transformation rule fails it is not clear if the second rule should be executed or not. Similarly,
the consequences if the second rule fails while the first rule succeeds are not clear. Therefore,
we decided to exclude orthogonal groupings in favor of a single containment hierarchy as used
in the text-based model.

4.5 Summary and Conclusion

In this chapter we presented our extended document engineering model. We model a single
transformation from document function to document form using a style sheet. Compared to the

86 CHAPTER 4. MODELING

traditional model, our model extends the notions of function, form and style to meet the spe-
cific requirements of multimedia documents. We include an explicit and parametrized delivery
context that represents the constraints of the environment the document is played in, and the spec-
ification of alternative style rules that are automatically invoked by the formatter if the resulting
document form does not comply to the hard constraints imposed by the delivery context. For
simplicity, the model does not support soft constraints, as a consequence, aesthetic preferences
are harder to make explicit. The model accommodates the preservation and reuse of metadata by
explicitly modeling it in the structured document, stylesheet and document form. Media items
and their intrinsic spatio-temporal dimensions are recorded explicitly in the structured document,
whereas the media content itself is referred to by means of a URI. All functional constructs have
an explicit priority. Both the structured document and the document form are modeled as an
ordered tree. More flexible graph structures may be desired in some cases, but are not supported
for reasons of simplicity. Similarly, the formatting model is based on a simple, three dimensional
bounding box paradigm.

We discuss the main pros and cons of our extended document engineering model below.

Author abstracts from document form (pro) The principle of document engineering is ab-
straction from the document form. This leads to certain advantages for the author of the docu-
ment, such as the automatic adaptation of the document form and the reuse of style. Although
the traditional document engineering model does not apply to multimedia documents, our model
makes these advantages available to the authors of multimedia documents.

Author abstracts from delivery context (pro) An advantage of our model is that the author of
a document can also abstract from the properties of a particular delivery context. Subsequently,
a formatter that implements the model can potentially generate a presentation for an obscure
delivery context the author is a priori unaware of (provided that the properties of the delivery
context can be represented). In contrast, the author of a SMIL or HTML document needs to be
aware of the potential delivery contexts the document is played in and specify a priori potential
adaptations for the various delivery contexts.

Formatter needs to have more knowledge (con) In contrast to the text-based model there is
no generic overflow strategy for multimedia documents. Therefore, the formatting of a multime-
dia document requires the specification of more explicit knowledge to compensate for potential
formatting failures.

Less abstraction allowed in document form (con) In contrast to the text-based model, the
representation of document form for multimedia documents is more detailed than for text-based
documents. For example, the formatter of a text-based document abstracts over the length of a
document: depending on the context, the document form can be rendered using pages or by using
scroll-bars. The additional detail for multimedia documents is necessary because the formatting
of a multimedia document is not guaranteed to succeed. Therefore, the extended document
engineering model needs to make more detailed formatting decisions concerning the document
form. Consequently, the adaptability of the document form of a multimedia document is limited
compared to text-based documents.

Chapter 5

Cuypers document engineering
framework

The transformation from a structured document to its corresponding document form is per-
formed by a formatter, which is independent of a particular document. In this chapter we present
Cuypers1, our document engineering framework that is implemented based on the extended doc-
ument engineering model, described in the previous chapter.

The framework demonstrates that a formatter based on our extended model can be imple-
mented using commonly available software tools and commodity hardware. The framework will
be evaluated based on three usage scenarios in the next chapter.

In section 5.1 we present the high-level architecture of the Cuypers framework and how it
can be integrated into a more general Web architecture. Section 5.2 describes the document
engineering vocabularies that describe the structured document, the stylesheet, the document
form and the delivery context. Section 5.3 describes the Cuypers formatter, which implements
the core of the extended document engineering model. In section 5.4, we conclude and highlight
the most important lessons learned during the implementation of Cuypers.

This chapter is partly based on material that has previously been published in [65, 66, 98,
140, 141].

5.1 Overview of the Cuypers framework architecture

Recall that document engineering is especially desirable in a web context due to the hetero-
geneous nature of the available delivery context. Therefore, requirement WORLD WIDE WEB
(#13/p.68) states that the formatter that implements the extended document engineering model
should comply to the architectural requirements of the web. Although the document engineering
model abstracts from such architectural issues, it does affect the implementation of the format-
ter. The main goal of this section is to provide an overview of the architecture of the Cuypers

1The Cuypers framework is the result of a continuous line of research that spans multiple funding projects,
including the Dutch national projects NASH, ToKeN2000 and Dynamo; and the European ITEA/RTIPA and
FP6/Question How projects.

87

88 CHAPTER 5. CUYPERS DOCUMENT ENGINEERING FRAMEWORK

Figure 5.1: High-level overview of the Cuypers document engineering framework.

document engineering framework and to show the implications of a common web architecture
on the implementation of the formatter.

In a web environment, server and client are typically independently developed entities that
communicate through standardized, typically stateless protocols and data structures (see sec-
tion 2.3.1). Since the document engineering model abstracts from the client-server issues im-
posed by the web, a one-to-one correspondence between the model and the implementation is
not possible. Similar to text-based document engineering on the web, the transformation from
structured document to document form as described by our model could be implemented by
multiple sequential transformations. We refer to these transformations, which may be distributed
across a network, as the transformation chain (see section 2.1.3). In this respect it is important
to clarify the relation between the commonly used terms reader, user and client. The reader
denotes the person who perceives the document form as described in our extended model (see
chapter 4). The user is the person who uses an interactive web application to access a document
made available by an author. In this context user corresponds to the reader described in the
model. Note that the term “document” may refer to the structured document from the authors
perspective, and the document form from the readers perspective. The user is also associated
with the client, which denotes the web-application that the user uses to request a document.
However, depending on the context, it may also refer to the more general notion of a software
component that receives information from a server. Similarly, server is typically associated with
the web-server application that sends the requested document to the client. With respect to the
extended document engineering model, the author of the structured document and the designer

5.1. OVERVIEW OF THE CUYPERS FRAMEWORK ARCHITECTURE 89

of the stylesheet are typically associated with the server. Furthermore, in a web environment, the
media items and associated metadata necessary to produce the document form may be distributed
on multiple servers on the web. We refer to these as content providers.

A high-level overview of the Cuypers framework is given in Figure 5.1. The user speci-
fies a request for a document through a query interface, which typically corresponds to a web-
application that generates the URL that identifies the document on the server. In addition to
the specification of the document, the web-application also sends the relevant properties of the
delivery context that are used to adapt the document form. Requirement DELIVERY CONTEXT
(#5/p.60) states that the format of the delivery context should be standardized; we therefore base
the specification of the delivery context on CC/PP [90]. However, since few client applications
implement this standard, the properties of the delivery context currently need to be explicitly
specified by the user2.

The server, indicated in figure 5.1 by the Cuypers engine, produces the document form based
on the user’s query, the delivery context, the stylesheet and the media and metadata provided by
the content providers. Part of the Cuypers engine is the Cuypers formatter that we describe in
section 5.3. The produced document form is sent back to the client. In a web context the client
is independent of the server. Therefore, the format of the document form that is sent to the client
needs to be standardized. In figure 5.1 we represent the document form as a SMIL document,
although other formats are possible. The use of SMIL allowed us to use the Cuypers server
with a wide range of Web clients, including RealPlayer [124], Ambulant [33], GRiNS [118],
QuickTime [9] and Internet Explorer [108]).

Based on the high-level overview of figure 5.1, the remainder of this section will zoom in
on the five-step transformation chain that is the core of the Cuypers engine (section 5.1.1 and
the way it has been embedded in a Web server (section 5.1.2). We conclude this overview by
discussing the differences between Cuypers and more traditional implementations of document
transformation chains (section 5.1.3).

5.1.1 The five steps of the Cuypers transformation chain

The document engineering model describes a structured document that is transformed by a style-
sheet to its corresponding document form. Although this is often modelled as a single transfor-
mation, in practice there are often software engineering reasons to implement the transformation
as a sequence of transformations (i.e. see section 2.1.3). For example, in text-based document en-
gineering, LATEX and XSL-FO first transform to intermediate formats that can then be relatively
easily transformed to various delivery formats, such as PostScript, PDF and HTML. Further-
more, structured documents (e.g. HTML) in a modern web environment are often dynamically
generated from existing (database) content.

Similar to text-based document engineering, Cuypers implements the transformation from
structured document to document form by a sequence of transformation steps. As a result, docu-
ment engineering concepts described in the model, such as structured document, delivery context,
document form and stylesheet are implemented in the framework in a format that is optimized
for a particular transformation step. Figure 5.2 illustrates the transformation chain in Cuypers.

2Although most traditional document engineering models abstract from the delivery context, there are ex-
ceptions. Especially for mobile devices and hardware used by people with disabilities, the properties of the
delivery context are highly heterogeneous. This requires formatting strategies that are adapted to the specific
device or user. The W3C activity on Ubiquitous Web Applications [72] aims to standardize device and user
profiles to make this possible.

90 CHAPTER 5. CUYPERS DOCUMENT ENGINEERING FRAMEWORK

Figure 5.2: Cuypers server engine architecture

Concepts that refer to the model are represented using an italic font (e.g. structured document,
delivery context, stylesheet and document form), whereas their corresponding representations in
the framework are represented using a bold font (e.g. PS, delivery context, stylesheet and HFO).

As illustrated in figure 5.2 the structured document is represented in Cuypers by Presenta-
tion Structures (PS). This term may be counter intuitive as it refers to the functional structure
of the multimedia document, which abstracts from from presentation related issues. However,
“Presentation” is in this context used as a synonym for multimedia documents), comparable to
“book” or “rapport” in text-based document engineering. In section 5.2.2 we discuss the PSs
and how they implement the functional constructs as described by the model. The document
form in Cuypers is represented by a Hypermedia Formatting Object (HFO), and is discussed in
section 5.2.3. The delivery context (section 5.2.1) and stylesheet (section 5.2.4) are implemented
by data structures with the same name.

The number of transformation steps, in general, depends on the complexity of the transfor-
mation. In Cuypers we identify the following five steps:

Aggregation (1) The first transformation, represented in figure 5.2, aggregates the different in-
puts, including the user query and properties of the delivery context and dynamically

5.1. OVERVIEW OF THE CUYPERS FRAMEWORK ARCHITECTURE 91

generates the PS representing the structured document from external repositories.

Note that the dynamic generation of a structured document falls outside the scope of our
model. However, since pre-authored PSs are in general not readily available, we need
to include this processing step in the framework. In the next chapter, when we describe
specific evaluation scenarios, we elaborate on the methods used to generate the structured
document (see section 6.2, section 6.3 and section 6.4).

Normalization (2) The second transformation concerns a relatively straightforward transforma-
tion, which merges PS and delivery context into a format that can be interpreted by the
formatter, which we implemented in Prolog.

Formatting (3) The third transformation generates the document form, and is the conceptually
the main step in the transformation chain. It involves the application of style rules and
the detection and resolution of formatting failures. As we implemented the formatter in
Prolog, the result of this transformation is an HFO represented as a Prolog data structure
(e.g. a Prolog term). In section 5.3 we describe the implementation of the formatting step
in more detail.

Serialization (4) The fourth transformation serializes the Prolog HFOs to an XML format. Al-
though we could transform an HFO directly to a specific delivery format, such as SMIL
or HTML+Time, we intentionally serialize to a more abstract format. This way, it is
relatively easy to support multiple delivery formats.

Standardization (5) The final, fifth transformation is a relatively straightforward XSL(T) trans-
formation that transforms the XML representation of an HFO in the delivery format that is
processable by the client application. Currently we have implemented support for SMIL,
SMIL2 and HTML+TIME, but other suitable formats may be added by simply implement-
ing a XSL(T) transformation that transforms the HFO XML serialization to the desired
format.

5.1.2 Embedding the Cuypers chain into a Web server
To manage the server-side transformation chain we use the Cocoon [133] Web development
framework, which is based on a flexible pipe and filters software architecture (section 2.3.1). In
an earlier version of the Cuypers engine all pre and post processing steps were hosted by Cocoon
through servlet, embedding and auxiliary communicator software. For example, the Cuypers
formatter, at that time implemented in the constraint logic programming system ECLiPSe, was
embedded in a Java auxiliary application hosted by Cocoon. Although this approach successfully
implemented the Cuypers engine we found that maintaining the system was too complicated. The
software components had been independently developed, and communication between software
components was only successful for particular versions of the software, with incompatibilities
occurring when upgrading one of the software components. Because of these dependencies,
maintaining an up to date version of the system as a whole was non trivial. In addition, debugging
the system was overly complex as the cause of a reported error was often hard to infer when
multiple layers of embedded technology are in use (e.g. the formatter in Prolog, the SWI-Prolog
interpreter, the Java communication layer, the Cocoon transformation layer, the Java Virtual
Machine, etc.).

Therefore, in the current version we have reimplemented the Cuypers formatter as a stan-
dalone HTTP server. Cocoon sends the query, represented as a URL, to the Prolog formatter,

92 CHAPTER 5. CUYPERS DOCUMENT ENGINEERING FRAMEWORK

Figure 5.3: Formatting differences between text-based documents and multimedia documents.
The larger arrows represent computationally more expensive transformations.

which performs the transformation and returns the result directly in XML. The advantage of this
approach is that the transformation does not depend on third party libraries and can be tested
independently of the Cocoon transformation chain. In addition, it is also faster because the Pro-
log engine used to implement the Cuypers formatter needs to be started only once, whereas the
embedded solution started a new Prolog session for each request.

5.1.3 Discussion: The Cuypers versus the traditional transformation chain

Figure 5.3 illustrates the differences between transformation processing of typical text-based
documents versus multimedia documents. The upper two transformations refer to text-based
transformations, such as HTML or PDF. The first transformation (1) is typically processed on
the server, which sends the result to the client. The client performs a second transformation (2),
which results in the rendering of the document form. The larger arrow for the second transfor-
mation represents a computationally intensive step in the chain. For text-based formatting, type-
setting the text typically involves complex algorithms for kerning, hyphenation and pagination.
The smaller arrow represents a relatively simple syntactic transformation, typically performed
by a server, while the computationally heavy step is performed by the client. As a result the load
on the server is reduced. This is possible because the first transformation is independent of the
delivery context, while the second is independent of the original structured document. The only
constraint is that server and client should agree on the format of the communicated document
and stylesheet.

In contrast to text-based document engineering, the formatting of a multimedia document

5.2. CUYPERS VOCABULARIES 93

can fail, and every formatting step may depend on the delivery context. Therefore, most of the
formatting decisions for multimedia documents are made during the first transformation step. In
figure 5.3 this is illustrated in the lower transformation by a larger arrow denoting the transfor-
mation from a structured document to document form. Cuypers implements the computationally
expensive step server-side. However, the big advantage of this approach is that it allows the use
of standard web clients, including Real Player, Ambulant and GRiNS.

One can imagine an alternative model that complements the structured document with ad-
ditional metadata and alternative style rules that allows adaptation of the document form client-
side. This would, however, require standardization of the metadata necessary for adapting the
document to its delivery context, and standardization of a transformation language with alterna-
tive style rules. It is unlikely such a standard will emerge in the near future, therefore we perform
the transformation server-side.

5.1.4 Summary
The Cuypers framework implements a document engineering framework that complies to the
client-server architecture of the web. Main advantage of this approach is that the formatter
is applicable in a larger, heterogeneous environment where document engineering technology
is especially desirable. Additional advantage is that off-the-shelve software components may be
used, which reduces the implementation and maintenance effort of the framework. Disadvantage
is that, in contrast to text-based document engineering, the computational expensive formatting
step is necessarily performed server-side. As a result, the server may more easily be overloaded
when multiple multimedia documents residing on the server are requested in parallel.

5.2 Cuypers vocabularies
The document engineering model described in the previous chapter, models the required proper-
ties of the vocabularies used to describe the structured document, stylesheet and document form.
In addition, it models the properties of the delivery context, that, in contrast to the traditional
text-based model, should be explicitly described.

In this section we present the implementation of these vocabularies within the Cuypers doc-
ument engineering framework. We describe the representation of the delivery context, which
describes the environment the document form is adapted for. The vocabulary that implements a
structured document we have named presentation structures (PS). Note that the term “presenta-
tion” is used here as a synonym for multimedia document. The vocabulary that implements the
document form we have named hypermedia formatting objects (HFO).

5.2.1 Delivery context
The generated document form should satisfy the constraints imposed by the delivery context.
Section 4.1.2 modeled the required properties of the delivery context. In this section we describe
the implementation of the delivery context. Figure 5.4 presents a UML diagram, that represents
the delivery context as implemented in Cuypers (c.f. Figure 4.3 on page 77).

Analogously to the model, the delivery context in Cuypers includes a reference to a particular
instance of a structured document the reader wishes to access, and a reference to the stylesheet
that should be used to transform the selected structured document to its corresponding document
form.

94 CHAPTER 5. CUYPERS DOCUMENT ENGINEERING FRAMEWORK

The delivery context is represented by
`parameters’, which store attribute−value
pairs. We show here the parameters that are
supported in Cuypers.

cd: Delivery context

Delivery context

+ structured document :String
+ styesheet :String
+ max−width :int
+ max−height :int
+ max−duration :int
+ bandwidth :String
+ expertise :String
+ language :int

Figure 5.4: The delivery context is a data structure that represents the constraints imposed on the
generated document form.

In a traditional text-based document engineering system, the transformation may be executed
once the structured document and stylesheet are known to the formatter. However, as indicated
in the model, for multimedia documents the properties of the delivery context that constrain the
document form should be made explicit. This includes the attributes maximum-width, maximum-
height, maximum-duration, which denote the maximum available spatio-temporal resources for
the document form.

Besides spatio-temporal constraints that should be respected, the delivery context may con-
strain other properties of the document form. In Cuypers we have implemented support for
bandwidth, which can have one of the values fast, medium or slow. We use this value to opti-
mize the document form to the available bandwidth.

The expertise attribute represents the expertise level of the reader, which we use to tailor the
document form to the interest of the reader. We represent expertise by an integer value from 1
(novice) to 5 (expert), which is simple but sufficient to illustrate the principle of user adaptation.

Finally, the language attribute is used to adapt the document form to the preferred language
of the reader. We represent language by an HTML language code3.

5.2.2 Presentation Structures

Our presentation structures implement a functional vocabulary used to represent the structured
document4. Section 4.3 modeled the required properties of a functional vocabulary for mul-
timedia documents. In this section we present the implementation of the vocabulary within

3http://www.ietf.org/rfc/rfc1766.txt
4The term “presentation” in “presentation structure” is used as a synonym for a multimedia document and

does not refer to the action of presenting.

http://www.ietf.org/rfc/rfc1766.txt

5.2. CUYPERS VOCABULARIES 95

Group

A tuple is an attribute
with associated value.

AlternativeScene

+ title :Media

Presentation

+ title :Media
+ logo :Media [0..1]
+ music :Media [0..1]

Composite

+ children :PS[1..*]

Media

+ media :URL
+ modality :String
+ width :int
+ height :int
+ duration :int
+ mime :String

PS

+ order :int [1..*]
+ priority :int [1..*]
+ parent :PS[0..1]
+ classes:Tuple [*]
+ metadata :Tuple [*]

cd: Presentation structure

Figure 5.5: Presentation structures (PS) implement the structured document.

the Cuypers framework. Figure 5.5 shows a UML diagram representing the presentation struc-
ture vocabulary. Furthermore, table 5.1 presents the mapping between functional constructs
described by our extended document engineering model and the corresponding implementation
in the framework (c.f. Figure 4.4).

As illustrated in table 5.1, the presentation structures Presentation PS, Scene PS, Alternative
PS and Group PS are different variants of the composite functional constructs in our model. They
implement specific form conventions that are relatively generic (and shared by the scenarios
presented in the next chapter), so we included them in our presentation structure vocabulary. We
discuss this decision after the description of the implemented presentation structures.

PS

A PS defines the common properties that are shared by all presentation structures. In figure 5.5
this is represented by a UML inheritance relation. Analogously to the model, a PS is associ-
ated with an order and priority attribute. Order represents the linear order between presentation
structures. It is composed of one or more integer values, which correspond to the typical section
numbering also found in textual documents. For example, the value ‘1, 1, 4’ denotes that the

96 CHAPTER 5. CUYPERS DOCUMENT ENGINEERING FRAMEWORK

Model Framework
Functional construct (4.3) → PS
Functional atomic (4.3.1) → Media PS
Functional composite (4.3.2) → Composite PS
,, → Presentation PS
,, → Scene PS
,, → Alternative PS
,, → Group PS

Table 5.1: A mapping between the functional constructs of the model and the presentation struc-
tures (PS) used in the implementation.

presentation structure is ordered fourth relative to its siblings, whereas its parent and parent’s
parent are both ordered first relative to their siblings. Priority is represented in a similar way
and denotes the order in which presentation structures should be suppressed from the structured
document in case there are insufficient resources available for a successful transformation. The
parent attribute denotes the parent of the PS. All PSs, except for the root have exactly one par-
ent. This information may be used to contextualize the application of a style rule. A PS may
have associated class attributes that denote the specific function of the PS (e.g. “title”, “quote”
or “introduction”). Similar to CSS class attributes these are used to select a specific style rule to
transform the PS. Finally, additional metadata an author wishes to preserve may be represented
by zero or more attribute-value tuples.

All properties defined by the model for a functional construct are implemented by a PS.
However, classes are explicitly described in a PS, whereas they are implicitly represented as
metadata in the model (see section 4.3).

Media PS

A Media PS represents a media item in the structured document. Analogously to the model, a
Media PS has a media reference, which is a URL that refers to the media item, and an associated
MIME type. Furthermore, a Media PS denotes the width, height and duration of a media item,
which are necessary to detect constraint violations of spatio-temporal resources. If one of these
is not applicable, the respective value is set to 0. Note that although a Media PS contains a media
item, which has associated form properties that are necessary for future processing, it abstracts
from presentational issues. For example, the dimensions associated with a Media PS are not
necessarily the dimensions that are used in the document form. The formatter is free to adapt a
Media PS as long as the function that it represents is preserved. Finally, a Media PS includes
modality information, which is used to determine the default applicable style rule. Since true
modality information is typically not available, we use the MIME type associated with a media
item to guess the modality. For example, an media item with MIME type image/jpeg typically
has the modality “image”. However, this is not necessarily the case since a jpeg image may
portray a (scanned) text. In this case an inappropriate default style rule may be applied resulting
in incorrect behavior.

All properties defined by the model for a functional atomic are implemented by a Media PS
(see section 4.3.1).

5.2. CUYPERS VOCABULARIES 97

Composite PS

A Composite PS is used to define groups of presentation structures within a structured document.
Analogously to the model a Composite PS groups one or more children, which are denoted by
the children attribute.

All presentation structures (except for the root) have exactly one parent. Consequently, a
PS is, together with its siblings, member of exactly one group, resulting in a strict containment
hierarchy with one PS as its root. The main advantage of this approach is that the transformation
of a PS is independent of other orthogonal branches and therefore reduces the computational
complexity of the transformation.

However, from an authoring perspective it may sometimes be desirable to assign a PS to
multiple groups. For example, suppose there are multiple images with associated captions. An
author may wish to group an image with its corresponding caption to express the relation between
the two, but also a second group that contains just the captions. This, for example, to ensure that
all captions in the group are aligned consistently. Similarly, a third group containing the images
may be wished for, to express that all images within the group use a consistent color scheme.
The consequence of this approach is that a PS could become dependent on any other PS in the
document. This would increase the computational complexity of the transformation significantly,
because it becomes harder to check for failures, and it becomes harder to find alternatives.

Therefore, in Cuypers we do not support explicit orthogonal grouping, but instead support
some orthogonal grouping implicitly through class attributes (similar to HTML and CSS). Al-
though class attributes may be used to select a particular style rule, explicit constraints on the
members of such a group are not possible.

All properties defined by the model for a functional composite are implemented by a Com-
posite PS (see section 4.3.2).

Presentation PS

A Presentation PS is used to implement the form convention that helps us to recognize the genre
of a multimedia document. In Cuypers all generated multimedia documents include a title, back-
ground music and potentially one or more graphical logos representing the company or institute
associated with the multimedia document. Since this form convention is relatively generic we
include it in our functional vocabulary. Recall that, like all presentation structures, a Presentation
PS abstracts from the document form, therefore the layout and styling of title, background music
and logos are unspecified.

Scene PS

Typically, a multimedia document consists of multiple scenes, which help an author to rhetori-
cally structure a multimedia document. A Scene PS implements the form convention that helps
a reader to recognize a scene within a multimedia document and the media items that belong to
it. For this purpose, a Scene PS may have an associated title denoting the scope of the scene,
but this is not obligatory. Alternatively, a designer may choose to distinguishably format a scene
by particular style elements, such as background color, background music, or borders. However,
these are formatting decisions a Scene PS abstracts from.

98 CHAPTER 5. CUYPERS DOCUMENT ENGINEERING FRAMEWORK

Alternative PS

An Alternative PS allows an author to specify alternative presentation structures. This is, for
example, used when there are multiple equivalent Media PSs available with different presentation
properties, such as dimension, media quality or media type. Currently, the formatter simply
selects the first available alternative and backtracks if this choice turns out not to be appropriate.

Group PS

A Group PS is a presentation structure that specifies that its children should be conveyed as a
group. However, it should prevent that the user becomes cognitively overloaded, which happens
if two or more media items played in parallel require the attention of the user. For example,
when two videos or music fragments are played in parallel. This is especially useful when the
structured document is automatically generated and the types of the media items are not known
a priori.

To prevent cognitive overload, the style rule that implements the transformation form Group
PS to its corresponding HFO should be aware of the modalities that are associated with a media
item (see section 2.2.2). Unfortunately, the modalities used by a media item are, in general, not
available. However, by using the MIME type one can often make a relatively good guess.

Discussion

Functional vocabularies often relate to the genre of a particular document. For example the
functional vocabulary for the text-based genre “book” may include volume, part, chapter, sec-
tion, sub-section and paragraph. Note that the functional vocabulary for the more specific genre
“thesis” partly overlaps with the vocabulary for “book”. In contrast, the presentation structures
vocabulary we defined for multimedia documents is relatively shallow compared to the vocabu-
laries for text-based documents. One may argue this is the result of the relatively short history
of multimedia documents compared to the long history of authoring text-based documents. The
presentation structure vocabulary we defined here allows for a bare minimum of generic adap-
tation strategies. This includes alternative positioning of logos and title (Presentation PS, Scene
PS), formatting of an arbitrary number of media items with arbitrary MIME types (Group PS)
and the ability for an author to specify alternative media items (Alternative PS). This presentation
structures vocabulary is used to implement the three scenarios described in the next chapter (see
chapter 6). Although the vocabulary is relatively generic, other genre multimedia documents
may need to extend, or specify a different set of presentation structures.

5.2.3 Hypermedia Formatting Objects
Hypermedia Formatting Objects (HFO) are a form vocabulary used to describe the document
form of a multimedia document. Section 4.4 modeled the required properties of a form vocab-
ulary for multimedia documents. Based on this model, we describe the form vocabulary that
we implemented in the Cuypers framework. Figure 5.6 presents a UML diagram that illustrates
the different types of implemented HFOs. Furthermore, table 5.2 presents the mapping between
form constructs described in the model and its corresponding implementation in the HFO vocab-
ulary.

The Root HFO, Box HFO and Text HFO implement specific composites with example for-
matting behavior that proved useful during the implementation of the scenarios described in the

5.2. CUYPERS VOCABULARIES 99

Root has exactly one child. This child is
constrained by the Delivery conext.

Type denotes the spatio−temporal
ordering of the children and can be
either `vertical’, `horizontal’ or `sequence’.

Root

+ children :HFO
+ delivery−context :Delivery context

Box

+ type :String

Text

+ aspect ratio :float
+ text−length :int

Composite

+ children :HFO [*]

Atomic

+ MIME:String
+ media :URL

HFO

cd: Atomic − Composite

Figure 5.6: Hypermedia formatting objects implement the document form using a nested, 3D
box model. All media content is in the Atomic HFOs, and can be grouped by using Composite
HFOs. Text, Box and Root HFOs are examples of HFO implementations with more specific
formatting behavior.

next chapter. We do not claim completeness, and the set of composite HFOs may need to be
adapted or extended to achieve other formatting results.

In the remainder of this section we elaborate on the implementation of a functional construct
by a HFO, which following the model, includes layout, styling and hyperlinks. Subsequently, we
describe the different types of HFOs implemented in Cuypers. Finally, to serialize the document
form we use the standard SMIL authoring vocabulary. We conclude by comparing the HFO and
SMIL vocabularies.

HFO

An HFO defines the common properties that are shared by all HFOs. Figure 5.7 presents these
properties in a UML diagram (c.f. figure 4.5 on page 82). On the left-hand side the HFO class
is presented. Based on the CSS box formatting model (see section 2.2.2), it defines four three-
dimensional bounding boxes to represent respectively the margin, border, padding and content
box. The content-box of an HFO defines the region reserved for the content of the HFO. This
can be a media item, or zero or more HFOs. Figure 5.8 presents a graphical illustration of the

100 CHAPTER 5. CUYPERS DOCUMENT ENGINEERING FRAMEWORK

Model Framework
Form construct (4.4) → HFO
Form atomic (4.4.1) → Atomic HFO
Form composite (4.4.2) → Composite HFO
,, → Root HFO
,, → Box HFO
,, → Text HFO

Table 5.2: Mapping form constructs to hypermedia formatting objects (HFO)

four bounding boxes.
The properties that define a bounding box are illustrated in figure 5.7. These include 6

absolute coordinates that represent the corners of the bounding box. The z-order associated with
an HFO defines the stacking order in case of spatial overlap between HFOs. HFOs with a higher
z-order value are presented on top of HFOs with lower z-order values. The metadata attribute
represents a attribute-value list, that denotes the metadata that may be associated with an HFO.

Finally, an HFO includes the attributes style and hyperlink, which refer respectively to the
Style class and Hyperlink class, presented in figure 5.7. These are discussed in more detail below.

Style

The Style class implements a set of styling properties that are associated with the corresponding
HFO. The Style class in Figure 5.7 includes a list of example style properties that we have
implemented in Cuypers. This list is not intended to be complete (for a complete list of the style-
attributes implemented in Cuypers see appendix A). The style properties that relate to the spatial
layout, such as color, font and border are derived from CSS and have comparable semantics [28].
Temporal style properties, such as transition and delay are based on SMIL properties and have
identical semantics [155].

For design convenience we define, similar to CSS, an inheritance strategy for style attributes
of a HFO5. Note that inheritance of style attributes, just like CSS, reduces the design effort for a
stylesheet designer, but is not strictly necessary as each HFO can be styled individually.

Hyperlink

The Hyperlink class implements the ability to associate an HFO with a hyperlink. We base our
implementation of hyperlinks on the specification of hyperlinks in SMIL6. The target refers to
the resource the HFO is referring to. Properties specify the effect the activation of a hyperlink
has to the presentation. Although SMIL defines a collection of relevant properties, such as show,
external and actuate, Cuypers only implements the external property, which denotes whether or
not a link should be opened in an external application.

5Like CSS, not all style attributes are inheritable, see appendix A for an overview of inheritable style
attributes in Cuypers.

6See http://www.w3.org/TR/REC-smil/#hyperlinking

http://www.w3.org/TR/REC-smil/#hyperlinking

5.2. CUYPERS VOCABULARIES 101

The content−box of a HFO
may serve as the anchor of
a hyperlink.

A bounding box defines a
three dimensional region.

A tuple is a key−value pair.

Hyperlink

+ target :URL
+ properties :Tuple [*]

The content box is constrained
to fit within the padding box.
The padding box fits within the
border box. Finally, the border
box fits in the margin box.

Style

+ color :Tuple [*]
+ font :Tuple [*]
+ transition :Tuple [*]
+ margin :Tuple [*]
+ border :Tuple [*]
+ padding :Tuple [*]
+ delay :Tuple [*]
+ fill :Tuple [*]
+ alignment :Tuple [*]

Bounding Box

+ x−1 :int
+ y−1:int
+ t−1 :int
+ x−2 :int
+ y−2:int
+ t−2 :int

HFO

+ content−box :Bounding Box
+ padding−box :Bounding Box
+ border−box :Bounding Box
+ margin−box :Bounding Box
+ z−order :int
+ style :Style
+ hyperlink :Hyperlink
+ metadata :Tuple [*]

cd: Hypermedia Formatting Object (HFO)

Figure 5.7: More detailed view of the 3D layout boxes, hyperlink and style properties of Hyper-
media Formatting Objects.

Atomic HFO

An Atomic HFO is used to represent a media item in the document form. This includes the
MIME type and URL of the media item. The content-box of an Atomic HFO is constrained
to reserve sufficient resources for presenting the media item. Typically, the required resources
are based on the metadata associated with the media item. Images, video and audio can be
represented by a generic atomic HFO since the width, height and duration are known a priori7.
and require no specific, media dependent calculations. The width and height of a textual media
item are typically determined only at run-time, and require text-specific calculations. This is
handled by the Text HFO.

Text HFO

The Text HFO calculates the width and height of a text media item based on the length of the text,
the aspect-ratio and font properties, such as font-size and font-family. The aspect-ratio denotes
the ratio between width and height of the content box. The text-length denotes the length of the
text. The font-properties are specified as style properties.

7We assume media items represent pre-recorded assets, and do not support live streams with unknown
duration.

102 CHAPTER 5. CUYPERS DOCUMENT ENGINEERING FRAMEWORK

Figure 5.8: 3D view of the margin-box, border-box and content-box of a Hypermedia Formatting
Object (the padding-box is not explicitly indicated).

Composite HFO

A Composite HFO is used to group zero or more HFOs, which are represented by the children at-
tribute. All children have to be contained within the Composite HFO, resulting in a containment
hierarchy (see section 4.4.2). As a result, the dimensions of a Composite HFO can be calculated
based on the dimensions and positions of its children.

Furthermore, the inheritance strategy of the style attributes is based on the containment hi-
erarchy imposed by a Composite HFO. This is in contrast to CSS, which is based on the tree
structure of the structured document. Basing the inheritance hierarchy on the structured doc-
ument may, however, lead to odd behavior. For example, consider a structured document that
contains a paragraph and within this paragraph a footnote. Since the footnote is a child of the
paragraph, the style attributes of the paragraph are inherited by the footnote. This is typically not
the desired behavior because the footnote and the paragraph are presented in spatially different
regions of the document form. In contrast, if the inheritance is based on the document form, as
we do here, the footnote will inherit the expected style attributes.

5.2. CUYPERS VOCABULARIES 103

Box HFO

Although a Composite HFO contains all of its children, it does not specify additional spatial-
temporal relations between them. Based on our experience while implementing the scenarios,
we found that there are typical spatio-temporal relations, such as sequential ordering of children,
which often occur. Therefore, we extended the Composite HFO with a Box HFO, which specifies
additional spatial or temporal constraints on its children. The type attribute associated with a
Box HFO denotes the type of spatio-temporal constraints, which can be ‘horizontal’, ‘vertical’,
or ‘sequence’. A horizontal-box constrains it children to be ordered from left to right, whereas
a vertical-box orders it children from top to bottom, and a sequence-box orders its children one
after the other in time.

Root HFO

A Root HFO implements the HFO that contains all other HFOs in the document form. The Root
HFO has a reference to the delivery context as illustrated in figure 5.6. The width, height and
duration of the Root HFO are constrained by the max-width, max-height and max-duration that
are imposed by the delivery context. Since all other HFOs are part of this HFO, these constraints
are automatically applied to all descendant HFOs.

Discussion

Our HFO vocabulary is based on the document form of our extended document engineering
model, which is a simplified version of the AHM (see section 4.4). In contrast, the SMIL author-
ing vocabulary is an extension of the AHM. As a result there are SMIL constructs that are not
fully supported by our HFO vocabulary:

par/seq Temporal synchronization as modeled in SMIL is partly represented in Cuypers by
the temporal containment hierarchy of hypermedia formatting objects. As a result, syn-
chronization issues due to, for example network latency, can be automatically resolved
in most cases. However, synchronization relationships between two or more orthogonal
HFOs cannot be explicitly represented in our hypermedia formatting vocabulary. Conse-
quently, if an unexpected delay occurs that disrupts this relationship, the synchronization
cannot be preserved.

switch The SMIL switch element allows a user or player application to select one alterna-
tive out of a number of provided alternatives. For example, the switch element may be
used to include subtitles in multiple languages. The user may then dynamically switch
between subtitle languages. Cuypers generates the document form tailored for a specific
delivery context, which includes the language preference of the user. As a result, the doc-
ument form is generated directly including the preferred subtitle language. However, if a
user wishes to dynamically switch between languages this is will reformatting the entire
document. The reason for this is that media items may use spatio-temporal resources dif-
ferently. Since the document form is generated server-side, all required resources should
be known a priori.

region SMIL allows an author to reuse a specified spatial region for multiple media items.
Since in our model the spatio-temporal hierarchies are integrated, every media item re-
quires a separate region (section 4.4). This is because we generate document form auto-

104 CHAPTER 5. CUYPERS DOCUMENT ENGINEERING FRAMEWORK

matically and therefore do not need the authoring convenience of reusing regions offered
by SMIL.

5.2.4 Style rules

% (1) instance of a Presentation PS

ps([type:presentation, order:1, title:ps(...), ...])

% (2) instance of a vertical-box HFO

hfo([type:vertical-box, x1:100, x2:500, y1:0, y2:50, ...])

Figure 5.9: Example Prolog representations of a PS and an HFO. Attributes are denoted in a
Prolog list (e.g. [. . .]) by key:value pairs. A key is an atomic label, whereas a value can be a
composite structure. % indicates a comment and “. . . ” indicates omissions.

The transformation from functional constructs to their corresponding form constructs is de-
scribed by style rules as described in our model (see section 4.2). Existing stylesheet vocabular-
ies, such as CSS and XSL(T), are insufficiently expressive as they do not provide support for the
detection of failing style rules and compensation strategies.

In Cuypers, we use Prolog (see section 2.3.1) as the language to implement the style rule as
it supports the required properties for a stylesheet vocabulary. Prolog, like CSS and XSL(T), is a
declarative language, which allows the designer to specify the transformation while abstracting
from the procedural processing steps to execute the transformation. Furthermore, the require-
ment that a document engineering system should detect formatting failures and automatically
invoke an alternative style rule, is supported natively by Prolog’s support for backtracking dur-
ing evaluation. By using Prolog we also avoid the need to invent another style and transformation
language. However, on the down side, the expressive power of the Prolog language exceeds the
specified requirements necessary to represent style rules. As a result the language used is more
complicated than a special-purpose style language would have been.

In the remainder of this section we use a simplified Prolog notation to denote PSs, HFOs and
style rules. In contrast to the previous section, which described the PS and HFO vocabularies
conceptually, here we discuss the stylesheet vocabulary implemented by using example instances
of PSs, HFOs and style rules. Note that these are just examples to illustrate the stylesheet vocab-
ulary and are not meant to represent a meaningful transformation.

Figure 5.9 shows an example of a PS and an HFO represented as a Prolog term. The PS
(indicated by (1) in the figure) denotes a Presentation PS, which is indicated by the type attribute.
It has a title attribute with a Media PS as value that represents the title. The HFO (indicated by
(2) in the figure) denotes a hypermedia formatting object that formats its children organized in a
vertical-box HFO.

Figure 5.10 presents an example of two style rules represented by Prolog predicates8, where

8A Prolog predicate is a declarative, fallible rule that consists of a head and a body, separated by a “:-”.
The input and output variables of a predicate are represented as part of the head. Variables in Prolog start with
a capital. Due to its declarative nature, Prolog does not make an explicit difference between input and output

5.2. CUYPERS VOCABULARIES 105

% style rule for Presentation PS (1)

% stylerule(+PS, -HFO)
stylerule(PS,HFO) :-

% Selector part:
presentation(PS), % is PS a Presentation PS?
attribute(PS,title:TitlePS), % with a title?
\+ attribute(PS,logo:_), % but without a logo?

% Descriptor part:
stylerule(TitlePS,TitleHFO), % transform TitlePS to HFO
... % transform children (ScenesHFO)
Spec = hfo(% specify HFO

[
type:vertical-box, % title *above* scenes
children:[TitleHFO,ScenesHFO],
...

]),
createHFO(Spec,HFO). % attempt to create HFO

% alternative rule for Presentation PS (2)

stylerule(PS,HFO) :-
presentation(PS),
...
Spec = hfo(% specify HFO

[
type:temporal-box, % title *before* scenes
children:[TitleHFO,ScenesHFO],
...

]), % attempt to create HFO
createHFO(Spec,HFO).

Figure 5.10: Prolog representation of fallible style rules that transforms a PS to a HFO.

PS and HFO represent the input and output variables of the stylerule predicate.

Analogously to the style sheet model discussed in section 4.2, we need to support a suffi-
ciently expressive selector vocabulary to select PSs from the structured document, a sufficiently
expressive descriptor vocabulary that specifies the corresponding HFOs in the document form.
Furthermore, the system should be able to detect failing style rules and subsequently invoke alter-
natives. The implementation of these ingredients is discussed below. We conclude by discussing
the depth-first selection of alternative style rules imposed by Prolog backtracking.

arguments. However, it is custom to indicate by a “+” if a variable is supposed to be used as input, and a “-” if
a variable is supposed to be used as output. If a variable can be used as both input and output this is indicated
by a “?”

106 CHAPTER 5. CUYPERS DOCUMENT ENGINEERING FRAMEWORK

Selector vocabulary

The selector of a style rule should be sufficiently expressive to select any subset of functional
constructs from a structured document (see section 4.2). Similar to XPath in XSL(T), a style
rule is applied if a given PS from the structured document satisfies the conditions as described
by the selector. For example, the first style rule in figure 5.10 is applied if the given PS is a
Presentation PS with an associated title but without a logo. If the PS is not a Presentation PS,
in which case the presentation(PS) predicate fails, or the PS does have a logo, in which
case the \+ attribute(PS,logo:) predicate fails9, then the selector does not match and
the style rule is not applied. Although the selector in this example is relatively simple, the full
expressive power of Prolog may be used to represent more complex selectors (see section 2.3.1).

Descriptor vocabulary

Once a PS satisfies the conditions imposed by the selector, the descriptor specifies the corre-
sponding HFO that conveys the selected PS in the document form. Recall that the descriptor
vocabulary should be sufficiently expressive to create a document form with a different (tree)
structure that the (tree) structure of the structured document. Analogously to the extended doc-
ument engineering model, and similar to XSL(T), this is achieved by allowing the designer to
specify the order in which style rules are applied, and by allowing style rules to explicitly apply
style rules to the descendants of the selected functional construct.

For example, suppose a PS passes the selector of style rule (1) in figure 5.10. The next predi-
cate attribute(PS,title:TitlePS) retrieves the presentation structure that represents the
title of the multimedia document. The subsequent predicate stylerule(TitlePS,TitleHFO)
transforms the presentation structure to a hypermedia formatting object. The resulting TitleHFO
is included as the first child in the specified vertical-box HFO, independent of the position
of the title in the structured document.

Style rule failure

In contrast to traditional document engineering, the execution of a style rule may fail. In Cuypers,
this is implemented by the native failure and backtracking of Prolog’s evaluation strategy. For
example, the predicate createHFO(Spec,HFO) in the descriptor of the first style rule in fig-
ure 5.10 may fail due to a constraint violation. As a result, the first style rule may completely
fail, in which case the Prolog interpreter will try the second, alternative style rule automatically.

Alternative style rule

When a style rule fails, the extended document engineering model specifies that the formatter
should invoke the next alternative transformation rule, which is denoted by the next highest pri-
ority value. In Cuypers the priority of a style rule is represented by its position in the Prolog
stylesheet10. For example, suppose that the first style rule, which is designed to present the title

9“\+” denotes negation in Prolog.
10Technically, the execution order of the style rule predicates is determined by their position in the Prolog

database of loaded predicates, and this position could, in principle, be manipulated by the style rules them-
selves. However, in Cuypers we do not use this higher order feature. Consequently, the order in which style
rules are applied corresponds in practice to their order in the stylesheet.

5.2. CUYPERS VOCABULARIES 107

above the scenes, has failed due to insufficient vertical screen estate. The formatter then automat-
ically invokes the next style rule (2), which is designed to present the title before the scenes. If
this style rule succeeds, the transformation of the structured document is continued. Otherwise,
the formatter exhaustively tries all other style rules. If all the alternatives fail, the parent style
rule will also fail. As a result, the next alternative parent style rule will be invoked. This pro-
cess continues until either a solution is found, or no solution is possible given the current set of
style rules and the delivery context. In the latter case, Cuypers generates a minimal multimedia
document informing the user of its inability to generate the requested document.

Discussion

The key design decision for the implementation of the style rules is the choice for Prolog as the
language to implement the style rules. As mentioned before, the declarative nature and built-in
support for backtracking make Prolog well-suited to implement our (alternative) style rules. In
addition, have a general purpose programming language is convenient during prototyping, when
the precise requirements for the style language are not yet known. As we will see in the next
section, Prolog also has good support for constraint programming, which we will need to check
if an HFO created by a style rule actually meets the constraints imposed by the delivery context.
Finally, the SWI-Prolog distribution also includes libraries to deal effectively with metadata
in RDF, which we will need to implement the usage scenarios discussed in the next chapter.
Drawback of Prolog is the fact that few media designers will be familiar with this language,
which will make it hard to advocate this approach outside the current research prototype context.

On a lower level, a disadvantage of this approach is the efficiency of the depth-first approach
of backtracking over the tree of style rule alternatives. This is not always the most efficient way to
resolve a failing style rule since depth-first backtracking does not consider the context in which
the style rule failed. For example, consider a style rule that formats an image with a caption
that is positioned below the image and an alternative style rule that formats the image without
a caption. Suppose that the style rule which formats a number of images with captions has just
failed because there is insufficient real-estate to present the images ordered from left-to-right.
Although the removal of the captions cannot lead to a solution since it does not influence the
available horizontal real-estate, the formatter will nevertheless try every possible permutation of
images with and without captions to see whether it leads to a solution.

5.2.5 Summary

The vocabularies described in this section are used to represent instances of the delivery context,
structured document, document form and stylesheet, which are based on the model described in
the previous chapter. However, in contrast to the model, which abstracts from domain-specific
and formatting-specific issues, we implemented several objects providing such specific behavior.
The functionality provided by these objects is relatively generic and is used in and sufficient for
the implementation of all use-cases presented in the next chapter. These objects are, however,
mainly provided here as an example, and are not intended to provide a complete functional or
form vocabulary implementation.

Striking differences compared to traditional text-based vocabularies are that as a conse-
quence of the server-side formatting approach in Cuypers, the delivery context should be com-
municated to the server. Therefore, the vocabulary to represent the delivery context is, in contrast
to the text-based model, made explicit in the Cuypers framework. In addition, the structured doc-

108 CHAPTER 5. CUYPERS DOCUMENT ENGINEERING FRAMEWORK

ument and stylesheet vocabularies are designed to cope with potential formatting failures, which
are absent in traditional text-based vocabularies.

5.3 The Cuypers formatter

The Cuypers formatter transforms a structured document (i.e. PSs) to its corresponding document
form (i.e. HFOs) that is adapted to a particular delivery context by executing style rules.

Recall that the style rules are represented using the Prolog language (see section 5.2.4).
To facilitate the execution of style rules, the Cuypers formatter is implemented in SWI-Prolog,
which is a general purpose Prolog implementation. To reduce the complexity of manipulating
Prolog data structures and improve the maintainability of the software, the Cuypers formatter
uses an object-oriented representation of PSs and HFOs [103]. For this we use Logtalk [109],
which is an object-oriented extension of Prolog (see section 2.3.1).

In contrast to traditional document engineering, the Cuypers formatter should detect format-
ting failures and invoke an alternative style rule to resolve the failure. We implemented this
behavior by basing the formatter on the constraint logic programming paradigm (CLP), which
extends the efficient detection of constraint violations, with the automatic invocation of alterna-
tive rules (i.e. backtracking) to prove a goal used in logic programming (see section 2.3.1)11.

In the remainder of this section we first provide an overview of the core formatting transfor-
mation step. Then we will focus on the implementation of constraints in Cuypers. In particular,
the generation and resolution of constraints and the distribution of excess resources that may
remain after satisfying the constraints. Finally, we discuss the advantages and limitations of our
approach.

5.3.1 Formatting process

Figure 5.11 presents a UML state diagram, that illustrates the procedural behavior of the format-
ter. The start state, which is indicated by a filled black circle, represents the start of the Cuypers
formatter. The termination of the formatter is indicated by the end state, which is represented
by an open circle with a filled black circle in the center. The processing steps are indicated by
simple and composite states, which are both represented by oval boxes with a descriptive title.
Simple states have an empty body, whereas composite states contain a state diagram. A compos-
ite state terminates when its internal state diagram reaches an end state. The transition from one
state to the next is indicated by an arrow. If there are multiple transitions possible, the condition
to pursue a transition is indicated in square brackets.

The first (pre-processing) and last (serialize) are just syntax transformation required to get
the input and output in a convenient format. The formatting decisions are taken in two steps. In
the transform step an HFO tree is generated that satisfies all constraints. In the labeling step all
remaining layout decisions are made by binding all constraint variables to a specific value (see
upper third of figure 5.11).

11In a prior version of the Cuypers formatter, we experimented with ECLiPSe, which is software particularly
dedicated to constraint logic programming. However, although the resolution of constraints is, in general,
more efficient in ECLiPSe we decided to continue development using SWI-Prolog because of its extensive
libraries that facilitated integration of the software in a web environment, notably libraries dedicated to HTTP
communication, XML processing and support for Semantic Web technology.

5.3. THE CUYPERS FORMATTER 109

Serialize

Transform

Apply style ruleSelect matching style rule

Transform fails

[Style rule selected]

[No (more) applicable style rules]

[Application of style rule fails]/ select alternative style rule

Transform
succeeds

[Style rule applied]

Start

Apply style rule

Start

Style rule fails

Resolve constraintsGenerate constraintsTransform
[Transform
succeed

]

Style rule
succeed

[Constraints cannot be satisfied]

[Transform failed]

[Constraints
satisfied

]

[PS is leaf node]

Recursive call that
transforms the
children of a PS

sm: Cuypers formatter

EndStart

Generate error report

LabelingTransformPre−processing

[Transform failed]

[Transform
suceed

]

Figure 5.11: Overview of the formatting process, expressed as a UML state diagram.

pre-processing includes the transformation from the structured document and delivery context
into an object-oriented representation using Logtalk. This step is a direct consequence of
using Logtalk.

transform attempts to transform the structured document to its corresponding document form.
It is the main step that generates all constraints, checks them and invokes alternatives
constraints are violated. Note that this is a common step in every a CLP program.

Typically, this transformation produces the Root HFO and its descendants, together repre-
senting the document form. During this process, each HFO asserts its own constraints, and
constraint violations cause alternative style rules to be executed. However, it is possible
that, given the current structured document, stylesheet and delivery context the formatter
is unable to successfully generate the document form. In this case the formatter gener-

110 CHAPTER 5. CUYPERS DOCUMENT ENGINEERING FRAMEWORK

ates an error report that informs the reader about its inability to generate the document
form. Note that the error report is also represented by an HFO, therefore the result of the
transform state is always an HFO.

The transform step consists of selecting and apply stylesheets (see middle of figure 5.11).
select matching style selects one of the applicable style rule. As indicated by the style-
sheet vocabulary in section 5.2.4, the Cuypers formatter selects the first applicable style
rule. If there is no (more) applicable style rule, the select matching style rules state, and,
consequently, the transform state, fails.

The apply style rule step attempts to transform a PS to a HFO by applying the previously
selected style rule. Like the transform state, the apply style rule may fail. This typically
is because of insufficient spatio-temporal resources but it may also fail for other reasons,
such as incompatible network characteristics or conflicting user preferences. If the appli-
cation of a style rule fails, the formatter backtracks to the previous select matching style
rule state to select the next applicable style rule (if there is one). Otherwise, the apply
style rule state and consequently the transform state succeeds.

The apply style rule process attempts to apply a give style rule to a given PS and produce
its corresponding HFO (bottom third of figure 5.11).

transform attempts to transform the children of the PS to their corresponding HFO. Note
that this is recursive process that ends when a PS does not have children as indicated
in figure 5.11.

generate constraints imposes constraints on the resulting HFO. This includes constraints
that are imposed by the delivery context and constraints that should be satisfied in
order to convey the represented function of the PS through form.

resolve constraints attempts to satisfy the imposed constraints. If all constraints im-
posed by the style rule can be satisfied the apply style rule succeeds. However, if
there is conflict, which prevents satisfying all constraints, the resolve constraints
state and consequently the apply style rule state fail.

labeling distributes excess resources that typically remain after all constraints are satisfied (see
section 2.3.1). Note that this is also a common step in every a CLP program. For spatio-
temporal resources in multimedia documents, labeling corresponds to applying style at-
tributes that specify the use of available space, such as the fill-width attribute that,
similar to CSS, specifies that the width of an HFO should be minimized or maximized.

serialize transforms the object-oriented representation of the HFOs representing the document
form into an XML format that may be further processed by the Cuypers engine (see sec-
tion 5.1).

5.3.2 Resolving constraints
An HFO is represented by four three-dimensional bounding boxes: the content-box, the border-
box, the padding-box and the margin-box (see section 5.2.3). The coordinates of these boxes are
represented as constraint variables, which are variables with an associated domain. In contrast
to Prolog variables, which do not have an explicit associated domain, the domain reduces when
constraints that involve the variable are added.

5.3. THE CUYPERS FORMATTER 111

Allen’s qualitative
relations Quantitative constraints

A before B A.Z2 < B.Z1

A during B A.Z1 > B.Z1, A.Z2 < B.Z2

A overlaps B A.Z1 < B.Z1, A.Z2 > B.Z1, A.Z2 < B.Z2

A meets B A.Z2 = B.Z1

A starts B A.Z1 = B.Z1, A.Z2 − A.Z1 < B.Z2 − B.Z1

A finishes B A.Z2 = B.Z2, A.Z2 − A.Z1 < B.Z2 − B.Z1

A equals B A.Z1 = B.Z1, A.Z2 = B.Z2

Figure 5.12: Allen’s relations expressed using quantitative constraints. “A” and “B” denote a
particular hypermedia formatting object, whereas “Z” denotes a particular dimension (x, y or t)

In Cuypers, we represent the coordinates of an HFO by constraint variables with integer
domains. For example, initially the domain of the X1 coordinate of a content-box, which we
denote as X1content, is {−9223372036854775807 . . . 9223372036854775807}12. Suppose that
the delivery context specifies that the maximum width of the screen used to play the document
is 1024. This is expressed by the constraints X1content ≥ 0 and X1content ≤ 1024. As a result, the
domain of the X1content coordinate can be significantly reduced to {0 . . . 1024}.

Some of the constraints on the coordinates of an HFO depend on style attributes, such as
margin, border and padding. For example, the relation between the X1content coordinate and the
X1border coordinate expressed as a constraint is X1content = X1border + Paddingleft. The domain of
the constraint variable Paddingleft, however, is specified by the style attributes min-padding-left
and max-padding-left. For an overview of the style attributes that are relevant for the cre-
ation of an HFO see appendix A.

Besides constraints based on integer values, the domain of a constraint variable may be
dynamically reduced by specifying relations between constraint variables. For example, the
fact that the X1content coordinate is always smaller then the X2content may be expressed by the
constraint X1content ≤ X2content. If the domain of X1content is reduced, the domain of X2content

is automatically reduced so that the constraint X1content ≤ X2content still holds. Similarly, if the
domain of X2content is reduced the domain of X1content is automatically reduced as well.

Spatio-temporal relations between two HFOs may be expressed by inequality constraints.
For example, we may express that a certain HFO, which we indicate by A, is spatially positioned
left-of another HFO, which we indicate by B, by the constraint A.X2margin−box < B.X1margin.
Note that content-box and padding-box are contained within the margin-box, therefore a con-
straint on the margin-box suffices. In a similar way, other spatio-temporal relations may be
expressed. Figure 5.12 represents the spatio-temporal relations and their corresponding inequal-
ity constraints that we have implemented in Cuypers. These quantitative relations are based on

12Theoretically, the domain should be {−∞ . . .∞} but in practice the domain is typically bound by the
largest possible representation of an integer.

112 CHAPTER 5. CUYPERS DOCUMENT ENGINEERING FRAMEWORK

Allen’s 13 temporal relationships to denote the qualitative relationship between two objects [5].
Although Allen’s relations are designed for denoting temporal relationships we use them to rep-
resent spatial relationships as well13.

The domains of constraint variables are always reduced, never expanded. As a result, the
search space of possible assignments for a variable gets smaller, resulting in a more efficient
resolution of the constraints. If the domain of a variable gets reduced to {} (the empty domain)
this means that there is no satisfactory value left in the domain and, consequently, the constraint
that led to the empty domain fails. Recall that the failure of a constraint is interpreted similar to a
formatting failure by the Prolog engine. Consequently, the style rule that imposed the constraint
fails, and the Prolog backtracking mechanism automatically invokes an alternative style rule.

Discussion: Non-arithmetic constraints

Currently constraints within the Cuypers formatter are limited to spatio-temporal constraints.
However, constraints on other properties of a form construct, such as style and media items,
may be possible as well. One can imagine variable font sizes depending on the screen size of
the device. For example, a constraint that states that the font size of a title should be larger
than the font size used for a paragraph. Another example of a non-numeric constraint may be
that the dominant color of an image should match the color-scheme as defined in the stylesheet.
Although, CLP is not limited to arithmetic domains, the necessary domain reduction rules are
typically not readily available for such exotic domains and need to be specifically defined. Be-
sides the challenge of identifying constraints and domains for multimedia documents, defining
efficient domain reduction rules is a relatively complex task, which requires knowledge of con-
straint programming theory. Therefore, dynamically extending the formatter for other types of
constraints, by for example a stylesheet designer, is not realistic.

5.3.3 Labeling of constraint variables
If all style rules are successfully applied this ensures that the created HFOs satisfy the imposed
constraints and the document form will be presentable within the specified delivery context.
However, the domains of the constraint variables that model an HFO are typically not reduced to
a single value (i.e. bound), but may contain multiple values that all participate in a solution to the
imposed constraints. This is a typical situation, since it is unlikely that the constraints imposed
by the HFO exactly meet the constraints imposed by the delivery context. In order to generate
the document form, the formatter needs to select for each constraint variable a single value from
its associated domain. In constraint programming, this process is called the labeling of constraint
variables. However, since the constraint variables of HFOs represent spatio-temporal resources,
the labeling of constraint variables actually implements a heuristic that specifies the usage of
excess spatio-temporal resources.

The usage of excess spatio-temporal resources is specified by the designer through style at-
tributes that are associated with an HFO (see appendix A). For example, fill-width, which
can have the value min, max, or center, specifies whether the width of an HFO should be mini-
mized, maximized or balanced, respectively. Similarly, the fill-height and fill-duration
style attributes specify the usage of vertical resources and temporal resources.

13Denoting spatial relationships by using Allen’s relations results in a relatively simple set of spatial relations
that is, for example, insufficiently expressive to represent rotation. However, since we currently do not support
rotation in Cuypers, this simple set of relations suffices. For an overview of qualitative spatial representation
and reasoning see [37].

5.4. CONCLUSION 113

An HFO may also use excess space for positioning. This is specified by the designer through
alignment style attributes. For example, the align-horizontal style attribute, which can have
the values left, right or center, positions the HFO, within its parent, to the left, the right, or
in the center, respectively. Similarly, the style attributes fill-height and fill-duration
align the respective HFO vertically and temporally.

Most text-based formatting vocabularies, including XSL-FO and TEX, process formatting
objects bottom-up (e.g. the child is processed before the parent). For our hypermedia formatting
objects we adopt a similar approach with the exception that we first determine the size of the
Root HFO. This allows us to minimize the use of spatio-temporal resources. Especially, when
the multimedia document is relatively small and the spatio-temporal resources as specified by
the delivery context are large, this leads to more aesthetically pleasing results.

5.3.4 Summary
The Cuypers formatter uses style rules implemented in Prolog to transform Presentation Struc-
tures (PSs, representing a structured document) to Hypermedia Formatting Objects (HFOs, rep-
resenting a corresponding document form). The need for detection of constraint violations and
backtracking over alternative style rules has been the key motivation for choosing a Constraint
Logic Programming approach. In Cuypers, each generated HFO asserts the resources it requires
by added the associated constraints to the total set of constraints. If this leads to an insolvable
set, creation of the HFO fails, which automatically leads to invocation of an alternative style
rule. We focus on spatio-temporal resource constraints, but also consider constraints related to
network characteristics and user preferences.

In most typical situations the formatter finds a combination of style rules that satisfies the
imposed constrains. For extremely constrained delivery contexts, none of the alternative style
rules may lead to a satisfactory solution. Consequently, in contrast to most text-based formatters,
a successful transformation cannot be guaranteed in Cuypers. However, in most cases a solution
is found. In these cases, the domain of most of the constraint variables in the HFO tree has
been significantly reduced. Labeling, the process of picking concrete values from these reduced
domains corresponds to the freedom a designer has to distribute small amounts of space over de
paddings, borders and margins of the various HFOs.

5.4 Conclusion
In this chapter we discussed the Cuypers document engineering framework, which provides an
implementation of the model presented in the previous chapter. The framework is based on a
client/server Web architecture.

In contrast to traditional text-based formatters on the web, the Cuypers formatter produces
the document form server-side. Although this has the disadvantage that it increases the load on
the server, it has the advantage that standard available technology may be used to present the
document form. Note that in this architecture the delivery context of the reader should be made
available in a standardized format to the formatter. Although client-side support is still limited,
there is progress in this direction.

In addition to the implementation of formatter, in this chapter we have presented the vocab-
ularies implementing the stylesheet, the structured document and the document form.

The stylesheet vocabulary is implemented in Prolog as currently available stylesheet vocabu-
laries are insufficiently expressive to detect formatting failures and invoke alternative formatting.

114 CHAPTER 5. CUYPERS DOCUMENT ENGINEERING FRAMEWORK

Since these properties are available through Prolog backtracking behavior, we represent style
rules as Prolog predicates.

The functional vocabulary is represented by our presentation structure vocabulary (PS),
which is used to represent the structured document. The vocabulary implements the required
properties as represented in the model. However, based on our experience with the implemented
scenarios presented in the next chapter, we have extended the vocabulary with a number of form
conventions that are typical for multimedia documents. These include Scene PS and Group PS.

Finally, the form vocabulary is represented by our hypermedia formatting objects vocabu-
lary (HFO). Each HFO comes with a set of constraints that formalize the resources it requires.
Although the HFO vocabulary fully specifies the document form, we intentionally abstract from
using a specific presentation format. An additional XSL(T) transformation transforms HFOs to
a specific presentation format. This transformation is relatively straightforward, and can be used
to support multiple standardized presentation formats. In Cuypers we have implemented support
for SMIL 1.0, SMIL 2.0 and HTML+Time.

In the next chapter we present an evaluation of our model based on the implementation of
three document engineering scenarios that use the Cuypers framework described in this chapter.

Chapter 6

Evaluation scenarios

In chapter 4, we extended the traditional document engineering model to include the transforma-
tion from structured document to document form for multimedia documents. Chapter 5 presented
the document engineering framework that implements this model. In this chapter we show, by
using three implemented document engineering scenarios, the application of the document engi-
neering paradigm for multimedia documents. In addition, we show that the Cuypers formatter is
sufficiently efficient to apply the document engineering paradigm in practice.

Document engineering is particularly relevant when the amount of data is too large to author
manually, or when the represented data is dynamically updated, such as for news and weather
forecasts on the web. These types of documents are typically automatically generated from a
database. The document engineering paradigm assures that the generated document form is
automatically adapted for the heterogeneous delivery context on the web. Although multimedia
documents, such as SMIL, may be automatically generated, the current state of the art requires
that the delivery context is known at authoring time, which is typically not the case on the web.
Based on a database the Rijksmuseum uses to populate part of their website, our first scenario,
ScalAR1 automatically generates multimedia documents that are adapted for a specific delivery
context.

Although ScalAR successfully generates multimedia documents from a database, this ap-
proach requires a priori knowledge on the structure of the database to formulate the queries.
Consequently, the structure of the generated structured document is relatively static. The sec-
ond scenario, SEMINF, uses a relatively flat structured database containing media items that are
annotated with Dublin Core metadata. Based on the annotations, SEMINF dynamically infers
relationships between media items, which are represented in the structure of the document. As a
result, the structure of the structured document is variable.

The inference rules used in SEMINF are based on the Dublin Core metadata scheme. Al-
though this scheme is relatively simple and therefore commonly used, it lacks formalized se-
mantics and is therefore hard to process by a machine. As a result, the inferred relationships in
SEMINF are relatively simple and the correctness is not guaranteed. The third scenario, DISC,
uses semantic web technology to generate more sophisticated structured documents.

The first section clarifies the method we use to evaluate our model, which is based on three

1The name “ScalAR” stands for scalable ARIA, where ARIA (Amsterdam Rijksmuseum Interactive Sys-
tem) refers to the multimedia database of the Rijksmuseum.

115

116 CHAPTER 6. EVALUATION SCENARIOS

document engineering scenarios. The subsequent sections ScalAR, SEMINF and DISC elaborate
on the practical implementation of these scenarios using our Cuypers framework. Performance
is important on the web as the document form is typically generated on the fly. Therefore, in
the performance section we evaluate the performance of the Cuypers formatter. Finally, in the
conclusion section we synthesize the results presented in this chapter.

The SEMINF use case is developed in collaboration with Suzanne Little. The rules to gen-
erate discourse used in the DISC use case is work from Stefano Bocconi [26]. Furthermore, this
chapter includes previously published material from [65, 98, 140, 141].

6.1 Method
To validate our model and framework we demonstrate in three use cases that the document en-
gineering paradigm may be successfully applied to a number of multimedia documents that are
representative for each use case. Successful in this context means that: firstly, a single set of
style rules may be used to transform multiple structured documents. This corresponds directly to
meeting the reuse requirements discussed in section 3.1.2. Secondly, the intended output is au-
tomatically adapted to the delivery context without changing the function that is conveyed. This
corresponds directly to constraint requirements discussed in sections 3.1.3, 3.2.2, 3.2.3 and 3.4.2.
Thirdly, the intended function, form and the transformation between the two can be expressed by
the provided vocabularies. This corresponds directly to expressivity requirements discussed in
sections 3.2.1, 3.3 and 3.4.1. In addition, the system implementing the model should be able to
communicate with other applications using Web data formats and protocols, and should be able
to import existing metadata as much as possible and also make metadata available to other appli-
cations. This corresponds directly with the architectural requirements discussed in sections 3.5.1
and 3.5.2.

We claim that the use cases show that our approach allows reuse of a single stylesheet to au-
tomatically generate document forms of sufficient quality for multiple structured documents. We
do not claim, however, to successfully generate a document form for all delivery contexts. For
example, delivery contexts with extremely small screens, or screens with extreme aspect-ratios
are not supported. What we do claim is that for documents that need to be published for heteroge-
neous delivery contexts, such as the web, adaptation to many realistic contexts can be automated
using our approach. In addition, we do not claim that the quality of the resulting presentations is
always comparable to the quality of those produced by professional author/designers. We claim
that the quality of the resulting document form is sufficient for a reader to interpret the document
function as represented in the structured document, and that our approach can be applied in cases
where manual design is not feasible.

Limitations
A key motivation for this thesis is the fact that current text-based document engineering models
and tools are not applicable to multimedia documents. A direct practical consequence of this
lack of tools is, unfortunately, that there are currently also little or no structured multimedia
documents which we can use to test our approach. Instead, the scenarios in this chapter use
data sets that are sufficiently rich in media and rich in metadata to allow structured documents
with media content to be generated automatically. However, such data sets are also rare, and
the few that do exist are often not available due to copyright issues. As a result, all data sets
deployed in our scenarios will come from a single domain: cultural heritage. This is a field with

6.2. SCALAR 117

a long tradition of carefully describing, and, more recently, digitizing cultural artifacts, often
resulting in richly annotated image repositories. The field also has a long tradition in sharing
their knowledge with the general public, and we thank the institutes that have made their data
available and allowing us to use it for research purposes.

All three scenarios presented in this chapter automatically generate structured documents
from a database, and all share a single domain. However, the intellectual content (i.e. the media
items and discourse structure) of each document is variable.

The media content used mainly consists of text and images, due to the lack of audiovisual
media assets in the original data sets. Despite this, all resulting presentations have sufficient
temporal aspects to show that similar presentations could have been generated with audiovisual
content as well.

Similar to the traditional text-based model, all resulting document forms need to be validated
by the stylesheet designer: we do not aim to evaluate the correctness of the multimedia style rules
themselves, but rather the consistency of the results of their application2.

6.2 ScalAR

The first use case, ScalAR3 (http://www.cwi.nl/˜media/demo/aria/, generates mul-
timedia documents based on a fixed set of relationships that are represented in an RDF graph that
is stored in a Sesame repository (see section 2.2.3). The relations are converted from a relational
database provided by the Rijksmuseum, which the museum uses to populate a part of its web-
site. The data set contains 369 artists, who are associated with 783 artworks with heterogeneous
dimension. Furthermore, the data set contains 702 encyclopedia entries describing concepts in
the art domain, which are associated with the artworks (3472 relations).

Figure 6.1 shows a screen shot of the interface used to formulate a query and to set the
properties of the delivery context. The query is composed by filling in the variables in the
sentence “Tell me about X in the works of Y”. X refers here to an encyclopedia entry and Y refers
to an artist, which are both selected from a pull-down menu. The values in the pull-down menus
are dynamically generated using Cocoon XSP [134] server pages. This technology allows a script
embedded in a page to be executed by the server once it is accessed by a client. The embedded
script sends a SeRQL [3] query to a Sesame RDF repository [31] retrieving all the artists and
keywords in the repository. Although RDF is designed for the web, XML technologies based
on XSLT and XPath do not support querying an RDF document/repository. We therefore used a
dedicated extension of XSLT for the RDF processing [143]. Once a keyword or artist is selected
the input-boxes are automatically updated to present only the relevant artists or keywords4.

We use a web interface to manually specify the properties of the delivery context as few
client-applications submit the properties of the delivery context automatically. Figure 6.1 shows
parameter settings for screen size, bandwidth, user expertise and user preferences. Note that in
addition to the standard screen sizes, the “other” option allows a user to specify any screen size.
In addition, the requested output format of the generated document form is explicitly specified.
We have implemented support for SMIL1, SMIL2 and HTML+Time. A similar interface has
been used for the SEMINF and DISC use cases.

2For an overview of research in this direction we refer to [6, 101, 146].
3Parts of the ScalAR use-case are previously published in [140, 141].
4There is an option to select “All” for either artist or keyword which will respectively retrieve all artist or

keywords.

http://www.cwi.nl/~media/demo/aria/

118 CHAPTER 6. EVALUATION SCENARIOS

Figure 6.1: Screen shot of the interface used in Cuypers to set the delivery context

The structure of the remainder of this section follows the five steps (aggregation, normaliza-
tion, formatting, serialization and standardization) from the transformation chain as presented in
figure 5.2 and section 5.1.1 of the previous chapter. In the last section we synthesize the lessons
learned from the ScalAR demonstrator.

6.2.1 Aggregation
During the aggregation phase the structured document is produced from the available resources.
In the remainder of this section we assume the selections have been made as in figure 6.1, that
is “Chiaroscuro” as the topic, “Rembrandt” as the artist, and a delivery context with a 1024x768
screen, broadband connection, low expertise level, no media preferences and SMIL 2.0 as the
preferred output format.

The artworks in the ARIA database have been annotated by the museum staff with relevant
encyclopedia entries, for which a textual description is available. Based on this information
we can construct a scenario where the relation between an artist and an encyclopedia entry is
presented by a textual description, accompanied by example artworks created by the related
artist.

Figure 6.2 presents this scenario for the artist “Rembrandt” and the encyclopedia term “Chiaro-

6.2. SCALAR 119

Figure 6.2: RST tree representation of a document about the artist “Rembrandt” and the ency-
clopedia entry “Chiaroscuro”. Media items (images and text) represent nucleus and satellites,
the arrows represent rhetorical relationships between nucleus and satellites.

scuro”. The media items are represented by rectangles. The textual description of the encyclo-
pedia term is shown on the left hand side, whereas the example artworks are shown on the right.
In addition, we generate a title based on the name of the artist and the selected topic, which is
shown at the top. The relations between media items are represented by rhetorical structure the-
ory (RST) relationships (see section 2.3.2). Although RST is intended for linguistic documents,
it can, to some extent, also be used to describe multimedia documents [34, 53, 97]. The media
items represent the nucleus and satellites, which are RST terms to denote part of the document.
In this presentation there is an elaboration relation between the title of the presentation and the
encyclopedia description. Furthermore, there is an example relation between the title and the
collection of images, that is a multi-nuclear sequence relation.

Similar to the approach used by DArtbio (see section 2.3.2) we use the RST-structure as a
template where the nucleus and satellites are filled in by media items relevant to the selected
artist and encyclopedia entry. Note that the number of artwork images, and therefore the number
of items in the multi-nuclear relationship “sequence”, is variable.

6.2.2 Normalization
During the normalization phase the aggregated structured document is transformed into a struc-
ture that may be processed by the Cuypers formatter. Typically, this concerns a relatively
straightforward transformation. However, our initial implementation of ScalAR used RST re-
lations as a structured document vocabulary, which was later replaced by our more generic
Presentation Structures (PS) vocabulary (see section 6.2.6 for a discussion on this decision).
Therefore, normalization in ScalAR includes a transformation from the generated RST structure

120 CHAPTER 6. EVALUATION SCENARIOS

Figure 6.3: Simplified presentation structure tree for the “Rembrandt” and “Chiaroscuro” docu-
ment. The boxes represent presentation structures (the letter in brackets is used for reference).
The label associated with each arrow specifies the relationship between two PSs, whereas the
tuple refers to the order and priority of the PS with respect to its siblings.

to the Presentation Structure (PS) format used by the formatter (see section 5.2.2).
Figure 6.3 represents the resulting structured document, where the boxes represent instances

of the Presentation Structures classes defined in section 5.2.2.
If the PS is a Media PS we portray the referenced media item. Furthermore, the text in

brackets refers to key-value annotations that are associated with the PS (e.g. class=title).
The annotations we include in the figure are added at run-time when the PS is generated. Existing
annotations, such as MIME type, are omitted from the figure for clarity. Similar to CSS class
attributes, these annotations may be used to select the appropriate style rule from the stylesheet.
The directed arrows between boxes represent relations between PSs (e.g. Media PS(f) is child of
Scene PS(d), Presentation PS(b) has title Media PS(c)). The numbers in brackets associated with
a relation denote, respectively, the order and priority of the PS with respect to its siblings (e.g.
(3,2) denotes the third child with second highest priority). The artworks are ordered by their
date of creation, whereas the importance of the artwork is represented by the priority relation,
which is based on the number of encyclopedia entries the artwork is annotated with.

In addition to the images of art objects and the textual description of the encyclopedia entry,
the textual media items representing the title and captions for the artworks (not represented in
figure 6.3) are generated on the fly. Furthermore, we include a media item representing the CWI
logo and we generate a voice-over media item based on the encyclopedia entry (omitted from

6.2. SCALAR 121

figure 6.3 for clarity).
Recall that conceptually, the result of the normalization phase can be seen as an instantiation

of a structured document in the model described in section 4.1. In addition to the structured
document, the delivery context and stylesheet are the domain dependent inputs to the formatter.
The delivery context is obtained through the web interface and the stylesheet is made available
on server, which we describe in more detail in the next section.

6.2.3 Formatting

During the formatting phase the presentation structures (PS) are transformed to hypermedia for-
matting objects (HFO) by applying style rules that are made available in a stylesheet. The style-
sheet, like the delivery context and structured document, may define the domain-dependent input
for the formatter. Consequently, the formatter engine itself can remain domain independent.

Also recall that the same stylesheet can be applied to transform multiple structured docu-
ments. In ScalAR, the same stylesheet can thus be used to transform every structured document
that can be generated based on an artist topic combination (as described in the previous section),
even if the number and sized of the media items vary or the specification of the delivery context
changes.

To illustrate the transformation process, figure 6.4 represents (a simplified version of) the
transformation of the PS structure of figure 6.3 to the corresponding document form represented
by HFOs.

As described in section 5.2.3 of the previous chapter, an HFO represents a three dimensional
spatio-temporal box that is constrained by the delivery context. In contrast to text-based format-
ting, the style rules that implement the transformation may fail. If a style rule fails the formatter
automatically invokes an alternative style rule. In the Cuypers formatter, described in section 5.3,
a constraint failure corresponds to a failing predicate (i.e. style rule). Consequently, if a style rule
fails, the Prolog backtracking engine automatically invokes an alternative style rule to generate
alternative HFOs.

The properties of the delivery context are represented in the Root HFO, which defines the
spatio-temporal constraints that should be respected by each HFO. In figure 6.4 the available real
estate for an HFO is denoted by the width (w), height (h) and duration (t). Since all HFOs are
contained within the Root HFO (indicated in figure 6.4 by the child relation) the spatio-temporal
constraints imposed on the Root HFO also apply to the HFOs contained within it. In addition
to width, height and duration, there are additional form properties, such as position and style,
associated with an HFO. For clarity we omit them here and refer to figure 5.7 for a complete
overview of the properties associated with each HFO.

With the exception of the Root HFO, which is generated by the system in a way that does
not depend on the structured document or style sheet, all other HFOs are produced by applying
a style rule to a PS. The bold text in figure 6.4 (e.g. Media PS (c)) denotes the selector of a style
rule, whereas a box represents the descriptor of a style rule (see section 5.2.4). Since we are
dealing here with instances of style rules, the selector refers to a specific PS from figure 6.3, and
the descriptor refers to an instance of an HFO that conveys the selected PS.

In addition to the specification of a target HFO, the descriptor of a style rule typically invokes
other style rules to recursively transform the children of the selected PS. For example, the style
rule that transforms the Scene PS (d), represented in figure 6.5, specifies the application of the
style rules to transform its children Media PS (f) and Composite PS (g). As with XSL(T), the
designer of a style rule may choose to adapt the structure of the document form by specifying

122 CHAPTER 6. EVALUATION SCENARIOS

Figure 6.4: Representation of the transformation process form Presentation Structures (PS) to
Hypermedia Formatting Objects (HFO). The text in bold refers to the originating presentation
structure (PS) denoted in figure 6.3, whereas the boxes represent the resulting hypermedia for-
matting objects (HFO). Overlapping HFOs represent alternatives (the HFO selected for the doc-
ument form is colored light).

the style rules that should be applied within the description of a style rule. However, in this
scenario the structure is preserved. Therefore, the children of a PS map to the children of the
corresponding HFOs.

Recall that the children of an HFO are contained within its parent HFO (see section 5.2.3).
This is illustrated in figure 6.4 by the child relationship between HFOs. The number associated
with this relation denotes the order of the child with respect to its siblings, which is obtained
from the order of the corresponding PS.

Finally, overlapping boxes in figure 6.4 denote alternative style rules. For example, the
Presentation PS (b) may be represented by a Vertical-box HFO or a Sequence HFO. If the trans-
formation to Vertical-box HFO fails, the next alternative style rule (denoted by the stacking order
in figure 6.4) is automatically invoked (through Prolog backtracking). In this scenario, there have
been two failing style rules, indicated by crossed-out lines, in figure 6.4. Both concern the trans-
formation from Composite PS (g). The first style rule attempts to format its children (i.e. the
artworks) in a Horizontal-box HFO, which fails due to a lack of horizontal real estate. Similarly,
the subsequent style rule fails due to a lack of vertical real estate. Finally, the third style rule

6.2. SCALAR 123

% style rule for Scene PS
stylerule(ScenePS,BoxHFO) :-
scene(ScenePS), % SELECTOR: is PS a Scene PS?
attribute(ScenePS,children:ChildrenPSs), % get children from Scene PS
stylerule(ChildrenPSs,ChildrenHFOs), % transform children to HFO
...
Spec = hfo(% DESCRIPTOR: specify HFO

[type:horizontal-box, % children presented left-to-right
children:ChildrenHFOs,
style:[x-align:min, ...], % box is left-aligned (min=left)
...

]),
createHFO(Spec,BoxHFO). % attempt to create HFO

... % other/alternative stylerules

Figure 6.5: Example fragment of a stylesheet containing a style rule to transform a Scene PS to
a horizontal-box HFO.

which presents its children in a (temporal) Sequence HFO succeeds. Note that Media PS(h) (see
figure 6.3) is not included in Composite PS(g). This is because of a failing style rule due to the
violation of a temporal constraint, which is resolved by omitting the least important Media PS
(h) from the document form.

The designer needs to ensure that, when encoding a set of alternative style rules, that all
possible alternatives still convey the intended message. For example, in Scene PS(d), the inten-
tion is that the “Clair-obscure” text is presented to the user before the example paintings. All
alternatives ensure this is the case, assuming a left to right order in the Horizontal-box HFO, and
top to bottom in the Vertical-box HFO.

Figure 6.5, which represents the stylesheet, and figure 6.6, which represents the formatter, il-
lustrate the formatting process in (pseudo) Prolog code. The transform predicate takes as input
a structured document, which is represented by the RootPS, the current delivery context, repre-
sented by DelContext and returns the corresponding document form, which is represented by
RootHFO. In general, the transformation recursively applies stylerules, which are defined in
a stylesheet. However, the transformation of the RootPS is document independent and specified
within the formatter, taking into account the constraints of the delivery context.

The children of the RootPS are transformed by style rules specified in a stylesheet. Fig-
ure 6.5 presents an example stylesheet containing a style rule that is used to transform a ScenePS
to its corresponding BoxHFO. A similar rule may be used to transform a RootPS. Typically, a
style rule recursively applies style rules to transform the children (ChildrenPSs) of the re-
spective PS to their respective HFOs (ChidrenHFOs). Once the children are successfully trans-
formed (this may fail), the stylerule transforms the parent into an HFO (which may also fail).
In figure 6.5, Spec specifies a horizontal-box HFO that is left-aligned (min refers to the
labeling strategy used, which we describe later). Finally, the stylerule attempts to create the
specified HFO by invoking the createHFO predicate, which is defined by the formatter.

The createHFO predicate creates the specified HFO if there are sufficient spatio-temporal
resources available. Figure 6.6) presents an example createHFO that is used to create a horizontal-box
HFO. It first initializes the constraint variables representing the coordinates of the bounding box

124 CHAPTER 6. EVALUATION SCENARIOS

% transform(+RootPS, +Delcontext -RootHFO)
% tranforms a structured document to its corresponding document form
% adapted to a given delivery context
transform(RootPS, DelContext, RootHFO) :-

stylerule(RootPS,DelContext, RootHFO), % recursively apply style rules
labeling(extents, RootHFO), % label extents recursively
labeling(positions,RootHFO), % label possitions recursively)
serialize(xml,RootHFO). % serialize HFO to XML

% creatHFO(+Spec, -HFO) % validate (or not) the constraints
% imposed by a horizontal-box HFO

createHFO(Spec,HFO) :-
attribute(type:horizontal-box,Spec), % Spec specifies a horizontal-box
init(Spec, HFO), % initialize constraint variables
... % get coordinates (cvars)
attribute(x2:ChildA_X2,ChildA_HFO), % top-right coordinate of ChildA
attribute(x1:ChildB_X2,ChildB_HFO), % top-left coordinate of ChildB
...
ChildA_X2 #< ChildB_X1, % impose constraints (may fail)

... % rules for other types of HFO

% labeling(+Type,-HFO) % establish position of the HFO
labeling(positions,HFO) :-

attribute(x-1:X1,HFO), % X1 is a constraint variable
attribute(x-align:Strategy,HFO), % Strategy = min|max
label(X1,Strategy), % unifies X1 with a domain value

% according to Strategy
... % label other coordinates
attribute(children:ChildrenHFOs,HFO), % label children
labeling(positions,ChildrenHFOs).

... % similar rules for extents

Figure 6.6: Representation of the transformation process from PS to HFO. For simplicity of
presentation we assume two children (ChildA, ChildB) in a horizontal-box. In reality the
number of children is variable.

associated with the HFO. Then it invokes the constraints that are characteristic for the specified
HFO. In this case the children of a horizontal-box HFO are presented ordered from left-to-
right. Therefore, one of the constraints invoked states that the top-right coordinate of a child
(e.g. ChildA) should be smaller as the top-left of its next sibling (e.g. ChildB). If this, or any
other constraint specified by createHFO, fails, the stylerule that invoked createHFO fails
as well. Consequently, the formatter backtracks and attempts to apply the next alternative style
rule until, eventually, it finds a set of stylerules that satisfy all constraints. If the formatter fails
to find a satisfactory set of style rules, which is exceptional, an error message is generated.

Once the stylerule that transforms the RootPS to its corresponding RootHFO succeeds, this
ensures that the document form can be successfully generated. However, at this point, the doc-
ument form is not yet fully established as its unlikely that the imposed constraints leave only
one single solution for all constraint variables. Typically, many constraint variables still have a
domain larger then one, which corresponds with excess spatio-temporal resources that allow an

6.2. SCALAR 125

HFO to “move” without violating a constraint. To fully establish the document form all con-
straint variables (i.e. coordinates) should be unified with exactly one value of their domain. This
process is called labeling (see section 5.3.3).

In Cuypers, we label the constraint variables of an HFO by recursively traversing the HFO
hierarchy two times. The first time (labeling(extents,HFO) in figure 6.6), the extents (i.e.
width, height and duration) are established in a bottom-up fashion, meaning that the extents of a
child are established before the extents of a parent. The one, debatable, exception to this rule is
the Root HFO, whose extents are established first by unifying the respective constraint variables
with the minimum value in their respective domains. Consequently, the document form uses
available spatio-temporal resources conservatively, which we found, in general, more aestheti-
cally pleasing. The second traversal (labeling(positions,HFO) in figure 6.6), establishes
the position of the HFOs in a top-down fashion, meaning that the position (i.e. x, y, t coordinates)
of a parent is established before the position of a child.

The lower level labeling strategy of constraint variables corresponds, on a higher level, to di-
rectives that describe how the formatter should use excess spatio-temporal resources. In Cuypers
these directives are specified through style attributes that are associated with a HFO. For exam-
ple, the stylerule in figure 6.5 that transforms a ScenePS specifies that the resulting BoxHFO
should be left-aligned (e.g. x-align:min). The labeling(position,HFO) predicate illus-
trated in figure 6.6 applies the specified horizontal alignment, in this case using a labeling strategy
that chooses minimal values for all X coordinates with domains larger than 1. See appendix A
for an overview of all style attributes that affect the labeling. Once the labeling is finished the
document form is completely established.

The result of the formatting phase is a completely instantiated (that is, with all layout de-
cisions taken) document form represented by HFOs. The HFOs are represented in an object-
oriented format (see section 5.3), which is passed to the serialization phase for further process-
ing.

6.2.4 Serialization

During the serialization phase the document form is serialized from the Prolog representation
used by the formatter to an XML format that can be further processed by the transformation
chain. In principle, the document form could be serialized directly in a standardized presentation
format, such as SMIL or HTML+TIME. However, by including an XML serialization of the
HFOs, multiple presentation formats, including SMIL and HTML+TIME, can be supported by
a relatively straightforward XSL(T) transformation. Figure 6.7 shows part of the serialization of
the HFO tree that results from the query “Rembrandt and Chiaroscuro”.

6.2.5 Standardization

The last stage of the transformation thus concerns a transformation from the HFO representation
in XML to a format that can be rendered by a third party player on the client. Figure 6.8 shows
two screen shots of the RealOne Player presenting the document form that is generated by the
Cuypers engine. The first shows the presentation that corresponds to the document requested
by the reader in this scenario. The second shows the solution that would have been generated
automatically in case the delivery context of the reader had specified a smaller screen size with a
different aspect-ratio. In the second solution, alternative style rules have placed the elaborating
text above the slide show of examples. As mentioned before, both solutions convey the intention

126 CHAPTER 6. EVALUATION SCENARIOS

<hfo:root id="root-presentation-59044"
hfo="hfo_root"
type="root"
hfo-subtype="root"
title="Rembrandt Harmensz. van Rijn and Chiaroscuro"
rights="CWI Amsterdam 2005"
function="Root presentation with title and body"
...

>
<hfo:deliveryContext

styleSheet="cuypers"
bandwidth="fast"
modality="none"
height="768"
width="1024"
...

/>
<hfo:properties

fill-width="min"
fill-height="min"
fill-duration="min"
...

/>
<hfo:y-box id="box-presentation-59044"

hfo="hfo_box"
type="composite"
hfo-subtype="y-box"

>
...
</hfo:y-box>

...
</hfo:root>

Figure 6.7: XML serialization of the HFO tree representing “Rembrandt and Chiaroscuro” (“. . . ”
indicates omissions)

of the author to first make the concept chiaroscuro clear before presenting example artworks that
illustrates it. If, however, the screen would also not have been sufficiently high to show both
the elaborating text and the examples, another alternative style rule could have placed the text
temporally before the images, leading to a third alternative solution (not shown in the figure).

6.2.6 Discussion

This section is based on the version of the Cuypers transformation engine at the time of writing.
Before developing this version, we have developed several earlier versions, where we explored
different aspects of multimedia document engineering in the context of the ScalAR use-case. All
have been developed in an incremental way and each prototype can be regarded as a reaction to
the lessons learned during the development of its predecessor. Below, we give a short account of
these lessons learned.

6.2. SCALAR 127

800× 768 pixels 640× 864 pixels

Figure 6.8: Two versions of “Rembrandt and Chiaroscuro”

Rhetorical Structure Theory insufficient as the functional vocabulary

Rhetorical Structure Theory (RST) defines a fixed set of domain independent relations that are
used to describe the rhetorical structure of a document. Our initial hypothesis of using RST as
functional vocabulary was based on the observation that the rhetorical structure of a text-based
document is automatically preserved while the document form is adapted. Since this is currently
not the case for multimedia documents, our assumption was that these relations should be made
explicit in the structured document.

Although we successfully used RST in this scenario, we found that the properties of RST
do not sufficiently coincide with our requirements on a functional vocabulary. Notably, require-
ment EXPRESS ORDER (#9.2/p.64), which states that a functional vocabulary should be suffi-
ciently expressive to express order between functional constructs, is not met by RST. Although
RST allows a nucleus to have multiple satellites, the order between sibling satellites is unde-
fined. Furthermore, requirement EXPRESS PRIORITY (#9.3/p.64), which states that a functional
vocabulary should be sufficiently expressive to denote priorities is also not satisfied by RST.

Need for a tightly integrated constraint solver

The first prototype, developed by Bailey et al.[127], aimed at the automatic transformation of
the results of simple multimedia database queries into a multimedia presentation encoded in
SMIL. The system consisted of a set of high-level transformation rules, specified in Prolog.

128 CHAPTER 6. EVALUATION SCENARIOS

The detailed calculation of the exact spatial coordinates of the presentation’s visual layout and
the precise synchronization requirements were written in Java using an off-the-shelf constraint
solver, Cassowary[16].

The problem with this approach, however, is that it is in general not possible to efficiently
revise a constraint. Once the entire set of constraints has been determined, the system can either
solve them or not. If it cannot, it is not known which constraint caused a failure and a complete
new set of constraints needs to be generated, in the hope that the new set will resolve the previous
problem. Additionally, the fact that the constraint generator (in Prolog) and the constraint solver
(in Java) were two separate programs made it even harder to control the revision of constraints
in a convenient way.

At the price of a slight performance penalty, we abandoned the dedicated constraint solver
and successfully addressed this issue by using Constraint Logic Programming technology.

Quantitative versus qualitative constraints

A drawback we initially faced with CLP was inappropriate backtracking behavior. For example,
when the domain of a specific coordinate has been reduced to, say [5..15], and the resulting layout
with x = 5 fails for some other reason and causes the system to backtrack, the solver might try
x = 6, x = 7, etc. This will, when the coordinates are expressed in pixel units, generate a number
of similar layouts that differ by only one pixel value for a particular media item: clearly, in most
cases this is not the desired backtrack behavior.

Instead of backtracking on the quantitative level, it is often more appropriate to backtrack
on a more qualitative level, e.g. by backtracking over the decision that A should be left of B, by
trying, for example, A above B. Typically CLP systems have no built-in solvers for qualitative
constraints such as “left-of” or “above”, however, they often support the definition of application-
specific domains and constraints. The application needs to provide the rules which the system
can use to reduce the domains of the associated variables. For example, we need a transitive rule
which states that if image A is left of image B and B is left of image C then A is left of C as well.
We also need a symmetric rule which states that if A is left of B then B is right of A, etc.

We experimented with qualitative constraints (implemented by CHR rules) [66] but aban-
doned the idea for various reasons. Firstly, the specification of such constraints is not trivial and
is a programming task by itself. For example, to fully define the transitive behavior of the 13
Allen temporal relations[5], it turns out that almost 500 rules are needed (these can be generated
automatically using rule generation algorithms [11]).

Secondly, since the availability of sufficient spatio-temporal resources should be ensured, a
transformation to quantitative constraints is still necessary. It turned out that the performance
improvement was marginal and did not outweigh the added complexity.

We found a more fruitful approach to address the inappropriate backtracking behavior by
ensuring that the generated CSP confirmed to a local consistency notion called arc-consistency
(see section 2.3.1). This notion ensures that at labeling time all domain values of a constraint
variable potentially participate in a solution. Consequently, during labeling no backtracking is
needed.

On the down-side, ensuring that constraints are arc-consistent is not trivial for more domain-
specific constraints. For example, the aspect-ratio constraint, which is not part of the standard
constraint library, was initially implemented as an ordinary Prolog predicate. However, since
the aspect-ratio could only be calculated once the respective Width and Height are known to the
formatter, the aspect-ratio could fail during labeling. As a result, the formatter would enumerate
(through backtracking) over all possible labellings of Width and Height until a satisfactory value

6.3. SEMINF 129

was found. To ensure arc-consistency we implemented the domain reduction algorithm for the
aspect-ratio constraint ourselves.

6.2.7 Conclusion

The ScalAR scenario is successful to the extent that it applies the document engineering paradigm
to multimedia documents, by automatically adapting the document form to a specific delivery
context without altering the function conveyed, and by reusing the stylesheet for multiple struc-
tured documents. The PS and HFO vocabularies proved sufficiently expressive to describe the
function and form of the documents in the scenario, and the input (RDF, XML) and output
formats (XML, SMIL) used to communicate with the engine are all commonly accepted Web
formats, with the exception of the style sheet (using Prolog).

However, the generated structured document is based on a fixed RST structure. As a result
all the generated structured documents conform to this structure consisting of a single scene
containing an elaborating text and a sequence of example images. In most practical applica-
tions, though, the structure of a structured document is not fixed, but might be different for each
instance.

Secondly, the MIME types of the media items that are returned in response to a query are
uniform and known a priori. In our case, the MIME type of the examples are all of MIME type
image/jpeg and the elaborating text is of MIME type text/plain. However, in a typical case
the MIME types of the media items used in the multimedia document are not known in advance.
Therefore, it is not clear a priori what style rule the formatter needs to apply to transform the
media items to HFOs. Furthermore, it is possible that a query returns media items of different
MIME types, which is not the case for our ScalAR demonstrator.

As a result, the properties of the structured documents generated by ScalAR may not be
considered representative for a generic document engineering scenario. Therefore, in the next
use case, we address these issues. The structure of the structured document is dynamically
generated based on the automatic inference of semantic relationships between media items, and
the media repository contains media items of various MIME types.

6.3 SEMINF

The second use case, SEMINF5 (http://www.cwi.nl/˜media/demo/oai/) was devel-
oped at the DSTC research institute in Brisbane Australia6.

The framework developed by the Open Archives Initiative (OAI) [94] facilitates interoper-
ability between digital archives by defining a protocol that allows exchange of metadata records
of the media assets in the archive. As a result, multiple archives can be queried simultaneously
resulting in a cross archival search of which the results possibly reveal new information. How-
ever, when the query results are too numerous it is often difficult to manually detect the implicit
relations between the results.

The SEMINF demonstrator automatically infers semantic relationships between the query
results based on the Dublin Core metadata that is associated with the media items in the archive.
The inferred relationships are then used to automatically generate a multimedia document that

5Parts of the SEMINF use-case are previously published in [98].
6The DSTC research institute closed in 2005.

http://www.cwi.nl/~media/demo/oai/

130 CHAPTER 6. EVALUATION SCENARIOS

conveys the relations to the user. Compared to the ScalAR demonstrator described in the pre-
vious section, the MIME type of the retrieved media items are unknown a priori. Furthermore,
the structure of the structured document depends on the inferred semantic relationships and is
therefore, in contrast to the ScalAR demonstrator, variable.

We use metadata from various archives, notably the Theodor Horydczak Collection (14,280
photographs)7, The Gottscho-Schleisner Collection (28,934 photographs)8 and the Library of
Congres Early Motion Pictures Collection (520 videos)9. Furthermore, we use a subset of Wik-
pedia abstracts (5376) from DBpedia that are syntactically matched to OAI records10. The re-
sulting metadata repository contains about 900,000 RDF triples.

The Dublin Core metadata associated with the media items turned out not to be suited for
generic automatic processing as is. For example, most of the records reference, instead of the
media item, an HTML page that contains copyright notifications in addition to the media item.
Therefore, we post-processed the harvested metdata to refer directly to the respective media item.
In addition, we also complement images with their spatial extents and MIME type. Finally, we
transform the OAI records, which are represented in XML, to RDF. Furthermore, Dublin Core
does not formally specify the values that are allowed for its metadata fields11. As a result, the
values found are highly heterogeneous, making it hard to define generic (string-based) matching
rules to produce the relationships for our approach.

The structure of the remainder of this section follows the five steps aggregation, normal-
ization, formatting, serialization and standardization from the transformation chain. In the last
section we synthesize the lessons learned from the SEMINF demonstrator.

6.3.1 Aggregation

During the aggregation phase the structured document is generated from the available resources.
Figure 6.9 shows two media items with their associated Dublin Core metadata that are re-

trieved when querying for “Abraham Lincoln”. The image on the left portrays Abraham Lincoln,
who is the creator of the emancipation proclamation, portrayed on the right. This relation is im-
plicitly present in the metadata presented below the image, as Abraham Lincoln is denoted as
the dc.subject of the left image and the dc.creator of the right image. The other rules that we use
in SEMINF to infer simple semantic relationships are portrayed in figure 6.10.

Except for the query selection, the interface we present to the user closely resembles the in-
terface for the ScalAR demonstrator. A user selects a query by selecting a keyword from a list of
proposed subjects which are derived from the Dublin Core subject metadata field that is associ-
ated with each media item. Just like the ScalAR demonstrator the query is sent, together with the
delivery context of the user, to the Cuypers engine. In the remainder of this section we assume
the user has expressed interest in “Abraham Lincoln”. The system then selects media items from
the repository for which either the dc:subject, the dc:title or dc:description fields
match the query. To reduce the computational complexity we limit the size of matching media
items to 100. We infer relationships according to the inference rules described in figure 6.10

7http://memory.loc.gov/ammem/thchtml/thhome.html
8http://memory.loc.gov/ammem/collections/gottscho/
9http://lcweb2.loc.gov/ammem/oamh/motion_pictures.html

10http://dbpedia.org/About
11at the time of writing, the Dublin Core specification, suggests reference values for some of the metadata

fields, such as date, coverage and format. Our data sources, at the time, did not conform to these recommenda-
tions.

http://memory.loc.gov/ammem/thchtml/thhome.html
http://memory.loc.gov/ammem/collections/gottscho/
http://lcweb2.loc.gov/ammem/oamh/motion_pictures.html
http://dbpedia.org/About

6.3. SEMINF 131

<title>Abraham Lincoln</title>
<creator>Gardner</creator>
<subject>Abraham Lincoln</subject>
<subject>President</subject>
<description>Photograph of Abraham

Lincoln taken in Washington
</description>
<date>1862</date>
<type>photograph</type>
<type>image</type>

<title>Draft of the
Emancipation Proclamation</title>

<creator>Abraham Lincoln</creator>
<subject>Emancipation Proclamation
</subject>
<description>Draft of the

Emancipation Proclamation by
President Abraham Lincoln,
July 22, 1862

</description>
<date>22/7/1862</date>
<type>hand written document</type>
<type>image</type>

Figure 6.9: Example media items with associated Dublin Core metadata [66].

within the matched media items. Figure 6.11 represents a graph of matching media items and
the inferred relationships between them.

The resulting set of inferred relations represents a graph structure, which does not map di-
rectly to the tree structure used in structured documents. In contrast to ScalAR, which uses
a static RST tree, SEMINF does not have an inherent rhetorical structure. Consequently the
generation of the structured document is not as straightforward.

To compensate for the lack of explicit higher level rhetoric, we consider in SEMINF a gen-
erated presentation as a sub-document within an interactive session with the user. A user scopes
the session by selecting a media item of interest in the currently running presentation, which
will be used as the topic of the subsequent presentation that is generated by SEMINF. This is in
contrast to ScalAR, which considers a presentation as a stand-alone document. Except for the
topic and the delivery context, which are passed to the subsequent presentation, from a technical
perspective subsequent sub-presentations are generated independently.

To bootstrap this process, the topic for the first presentation is automatically inferred by se-
lecting the media item that participates in most relations. The retrieved media items that have no
direct relationship to the inferred topic are disregarded, but may (re)appear in one the subsequent

132 CHAPTER 6. EVALUATION SCENARIOS

creates Object 2 visually represents the creator of Object 1
IF (obj1[dc.creator] = obj2[dc.subject] AND (obj1[dc.creator] = obj2[dc.title] AND
obj2[dc.type] = ‘image’)→ created(obj2,obj1)

describes Object 2 is a textual description of Object 1
IF (obj1[dc.title] = obj2[dc.subject] AND obj2[dc.type] = ‘text’)
→ describes(obj2, obj1)

depicts Object 2 visually portrays Object 2 (e.g. a picture of Abraham Lincoln “depicts” an article about
Abraham Lincoln)
IF (obj1[dc.title] = obj2[dc.subject] AND obj2[dc.type] = ‘image’)
→ depicts(obj2, obj1)

share context Object 1 and Object 2 are related and have contextual information (e.g. date, coverage) in
common
IF ((obj1[dc.subject] = obj2[dc.subject]) AND (obj1[dc.date] = obj2[dc.date] OR
obj1[dc.coverage] = obj2[dc.coverage] OR obj1[dc.contributor] = obj2[dc.contributor]))
→ shareContext(obj1, obj2)

colleague of Object 3 and Object 2 are visual representations of persons that are contributors to the same
object
IF (obj1[dc.creator] = obj2[dc.subject] AND obj2[dc.type] = ‘image’ AND
obj1[dc.contributor] = obj3[dc.subject] AND obj3[dc.type] = ‘image’)
→ colleagueOf(obj2,obj3) AND colleagueOf(obj3,obj2)12

Figure 6.10: The set of inference rules used in SEMINF

presentations if they correspond to the interest of the user. An alternative approach to determine
the first topic is to present the user a generated HTML page listing all the resulting media items
from which she selects the topic of interest. However, since the results are often numerous this
approach requires additional cognitive effort from the user.

After the topic is determined and the relations inferred we group the relations in three groups
reflecting the detail of the relation. Although this imposed grouping is relatively arbitrary, it
serves to generate a variable structured document, which is the purpose of the SEMINF use
case. The first group contains the shareContext and shareSource relations. Because we
consider these relationships relatively generic we use them to generate the introduction. The
second group contains the depicts and describes relations, which provide more detailed
information. We use them to generate the body of the document. Finally, the third group contains
the colleagueOf relationships. Since this might provide relevant related information to explore
further we use it to generate the ending.

6.3.2 Normalization
During the normalization phase the aggregated structured document is transformed into presen-
tation structures (PS) that may be processed by the Cuypers formatter.

Figure 6.12 illustrates the largest possible presentation structure that is generated in the case
that all relationships have instances. However, in practice, due to the sparsity of the relations
found, this is hardly ever the case. Therefore, the structure of the presentation structure is dy-
namically generated based on the available relationships.

As in the ScalAR demonstrator, the Presentation PS is the root of the presentation structure.
The title associated with the Presentation PS is generated based on the Dublin Core title of the
topic media item. Furthermore the Presentation PS consists of a maximum of three Scene PSs,

6.3. SEMINF 133

Figure 6.11: Graph representing the inferred relationships on the results of the query “Lincoln”.
The top-left media item is considered the topic of the presentation as it participates in most
relationships.

which represent, in sequence, an introduction to the topic, the main body and the ending. The
specific function of each Scene PS is indicated by a class attribute. This is necessary to distinc-
tively format the resulting HFO that is generated from each Scene PS. Similarly, the Composite
PS that groups the inferred relationships is associated with a class attribute denoting the relation.

In contrast to ScalAR, the MIME type of most of the media items are unknown a priori.
This is important because media items with arbitrary MIME types may cognitively overload the
user when presented together, such as multiple videos or audio clips in parallel. Consequently,
the formatter should determine at run-time what media items can be presented together without
cognitively overloading the user. For this we use a Group PS, which is a special type of Com-
posite PS specifically designed to convey grouping for media items with arbitrary MIME types
(see section 5.2.2). In the following section we explain in more detail the formatting of a Groups
PS.

6.3.3 Formatting

The style rules that transform this presentation structure to a hypermedia formatting object tree
are mostly reused from the stylesheet we used for the ScalAR demonstrator. However, SEMINF
uses a Group PS that is absent in ScalAR. Therefore we describe the transformation from Group
PS to HFO here in more detail.

The Group PS conveys multiple media items, which have heterogeneous MIME types, as a

134 CHAPTER 6. EVALUATION SCENARIOS

Figure 6.12: Presentation structure for the SEMINF use case

group without cognitively overloading the user. For this it uses modality knowledge that may be
associated with each media item [23]. However, typically modality knowledge is unknown for
the retrieved media items. Therefore, we use the associated MIME type to guess the modalities
of a media item. For example, the modalities of a JPEG image are typically analogue, arbitrary,
static and graphical, which defines a class of media items that includes photographs, paintings
and artistic drawings, whereas MP3 audio files typically are analogue, arbitrary, dynamic and
acoustic denoting a class of media items that represent music (see section 2.2.2 for an explanation
of these modalities). Although this works satisfactorily for most cases, there are exceptions. For
example, the query “Abraham Lincoln” returns a media item, that represents a digital scan of
the emancipation proclamation written by Lincoln. However, since the MIME type of the media
item is image/jpeg the media item is incorrectly associated with the modalities representing a
realistic image. Consequently, the wrong style rule is applied resulting in a document form that
reserves insufficient time for a reader to read both textual media items.

Figure 6.13 presents example style rules that convey grouping of media items. Every style
rule expects exactly two PSs, namely MediaA and MediaB and produces a HFO that conveys the
Group PS. Note that a PS may, besides a Media PS, be a Composite PS, which is not a priori
associated with modalities. In this case the modalities of the Composite PS are dynamically
aggregated by collecting the modalities of its children. Also, note that a Group PS often has more
than two children whereas the style rules to transform a Group PS only accounts for two children.
If a Group PS has more than two children, we recursively generate a Group PS containing a child
from the original Group PS and the recursively generated Group PS containing the remaining
children. The advantage of this approach is that a stylesheet designer only needs to specify
a limited number of style rules to account for all possible combinations of modalities. The
disadvantage of this approach is that the resulting HFO does not necessarily presents its children
in the most optimal combination. If more optimized combinations are desired, one may consider
extending the scope of a style rule. However, the number of style rules to cover all combinations

6.3. SEMINF 135

/*
Modalities are represented by:
li (linguistic) - based on existing syntactic-semantic systems of meaning.
an (analogue) - complementary to linguistic modalities.
ar (arbitrary) - rely on an existing system of meaning.
nar (non-arbitrary) - accompanied with appropriate representational conventions.
st (static) - modalities may be decoded by a user at any time.
dy (dynamic) - no freedom of inspection.
gr (graphical) - perceived by the visual sense.
ac (acoustic) - perceived by the hearing sense.

*/

% stylerule(+MediaA, +MediaB, -HFO)
(1) stylerule(MediaA, MediaB, HFO) :-

modality(MediaA,[li, nar, st, gr]), % is MediaA a textual label?
modality(MediaB,[li, ar, st, gr]), % is MediaB a narrative text?
!, % yes, then ...
stylerule(MediaA,HFOA), % transform MediaA to HFOA
stylerule(MediaA,HFOB), % transform MediaB to HFOB
HFO = ybox(HFOA, HFOB). % present HFOA above HFOB

(2) stylerule(MediaA, MediaB, HFO) :-
modality(MediaA,[li, nar, st, gr]), % is MediaA a textual label?
modality(MediaB,[an, ar, st, gr]), % is MediaB a picture?
!, % yes then ...
...
HFO = ybox(HFOB, HFOA). % present HFOB above HFOA

...

% Default style rules:

(3) stylerule(MediaA, MediaB, HFO) :- % are both media items acoustic?
modality(MediaA,[ac]),
modality(MediaB,[ac]),
!, % yes then ...
...
HFO = tbox(HFOA, HFOB). % present in sequence

(4) stylerule(MediaA, MediaB, HFO) :- % one media item is graphical
% the other acoustic?

modality(MediaA,[gr]),
modality(MediaB,[ac]),
!,
... % yes then ...
HFO = xbox(HFOA, HFOB). % present HFOA and HFOB in parallel

...

Figure 6.13: Simplified (for readability) Prolog representation of style rules that are used to trans-
form a Group PS, which groups media items with heterogeneous modalities. (“. . . ” indicates
omissions, numbers in brackets are used for future reference).

grows exponentially with the number of children.

136 CHAPTER 6. EVALUATION SCENARIOS

Style rule 1 transforms a Group PS that contains two MediaPSs, MediaA and MediaB to
an HFO. It first checks whether the first MediaPS (MediaA) is associated with the modalities
linguistic, non-arbitrary, static and graphical, which denotes textual media items that should be
associated with another media item, such as titles, captions and labels. Then, it checks whether
the second MediaPS (MediaB) is associated with the modalities linguistic, arbitrary, static and
graphical, which denotes textual media items that have a narrative. If both succeed then MediaA
and MediaB are transformed to their corresponding HFOs. Finally, HFOA (title) is presented
above HFOB (narrative text). Compare this to style rule 2, which presents a media item represent-
ing a caption, label or title (MediaA) below a media item that represents a photograph, painting
or artistic drawing.

Every media item is at least associated with, either a graphical modality, or an acoustic
modality (we ignore the haptic modality for practical reasons). Consequently, all combinations
of two Media PSs can be expressed by four default style rules. Style rules 3 and 4 present two of
the four default style rules that are executed if no other style rules applies13.

6.3.4 Serialization

During the serialization phase the document form is serialized from the Prolog representation
used by the formatter to an XML format that can be further processed by the transformation-
chain. Because there is no significant difference compared to the serialization phase of the
ScalAR demonstrator, we omit a detailed description here.

6.3.5 Standardization

The last stage of the transformation concerns the transformation from the HFO representation in
XML to a format that can be rendered by the third party player of the client. Because there is
no significant difference compared to the standardization phase of the ScalAR demonstrator, we
omit a detailed description here.

6.3.6 Discussion

Figure 6.14 presents a screen shot of a SMIL presentation that is generated by the SEMINF
demonstrator. The screen shot presents the body of the presentation conveying the depicts
relationship that is generated based on the query “Abraham Lincoln”. The describes relation-
ship is portrayed in a similar way, although the background color is adapted to reflect a different
relationship. The presentation consists further of an introduction, which is represented by a se-
quence of images that have a shareContext or a shareSource relationship with the topic.
Because no colleagueOf relationship could be inferred this presentation has no ending.

In contrast to ScalAR, which generates a structured document on the basis of a static tem-
plate, the SEMINF preprocessor generates the structured document dynamically. Consequently,
the structure of the structured document may vary, which is typical for a document engineering

13Since the scope of a style rule is variable it may happen that multiple style rules can be applied to transform
a Group PS. However, in general this is undesirable, as only the most specific rule should be applied. In Prolog
this behavior is achieved by organizing the style rules from specific to generic. Since the Prolog interpreter
applies rules in a depth-first fashion the first applicable style rule is the most specific one. To prevent undesirable
backtracking to other matching rules, the cut operator (!) is used, which eliminates all choice-points within the
scope of the matched rule.

6.3. SEMINF 137

Figure 6.14: Screen shot of Safari playing a SVG document generated using the SEMINF
demonstrator.

scenario. This allowed us to test the transformation rules in a more dynamic setting. The vari-
ability of the media items required an extension of the rules to handle combinations of items of
which the modality is not known a priori.

Table 6.1 presents the number of relations that are inferred for each query. The table shows
that the variety in inferred relationships is sparse. As a result, the generated structured documents
are in practice relatively homogeneous, when compared with the ScalAR use-case. The reasons
for this lack of diversity can be traced back to the quality of the metadata used to infer the
relationships.

Firstly, the application of inference rules is hampered by unstructured metadata values and/or
the use of incompatible schemas for many of the element values. For example, some data
providers use textual values for the dc.relation, dc.identifier and dc.source elements, while others
use URIs. This makes comparisons between values problematic. On the other hand, if particular
controlled vocabularies or schemes are used for certain Dublin Core elements, it may not be
applicable to migrate these values to other Dublin Core elements in order to infer semantically-
related resources.

Secondly, there is significant ambiguity over the purpose and content of many of the Dublin
Core element’s values. For example, in some cases the ‘creator’ is the creator of the digital

138 CHAPTER 6. EVALUATION SCENARIOS

query #c
re

at
es

#d
es

cr
ib

es

#d
ep

ic
ts

#s
ou

rc
e

of

#s
ha

re
so

ur
ce

#v
er

si
on

of

#s
ha

re
co

nt
ex

t

#c
ol

le
ag

ue
of

Lincoln 0 4 0 0 0 2 12 0
Monuments 0 6 0 0 0 2 42 0
Presidents 0 0 0 0 0 0 36 0
Sculpture 0 4 0 0 0 0 36 0
statue 0 6 0 0 0 2 42 0
Washington 0 0 0 0 0 2 54 0
Horydczak 0 0 0 0 0 1 54 0
Gottscho 0 0 0 0 0 2 6 0

Table 6.1: Number of inferred relations of the SEMINF demonstrator executing variable queries
(screen size is 1024× 768)

media item. In other cases, the ‘creator’ is the person who created the object depicted in the
media item. In some archives, the ‘creator’ of a musical recording is the composer, while in
others, the ‘creator’ is the primary musician. Likewise the dc.date value may be the date of
creation of the object depicted by the digital media item or even the date of publishing in the
OAI archive.

SEMINF shows that the Cuypers formatter successfully processes structured documents that
consist of media items of multiple MIME types. However, the variety of generated structured
documents is still relatively low due to the lack of formalized annotations. Therefore, the next
demonstrator DISC, uses formalized semantic web based knowledge and technology to infer
more detailed semantic relations and, as a result, generate a more complex structured document.

6.4 DISC
Recall that the properties of the generated structured document in our prior use cases were un-
satisfactory to validate the reuse of a stylesheet for variable structured documents. Notably, the
structured document generated by ScalAR was insufficiently dynamic as only the media items
where variable, whereas the structured document generated by SEMINF turned out to be too
sparse due to lack of formalized metadata. Therefore, the main purpose of the DISC use case14

is to generate a relatively large and heterogeneous structured document to validate the reuse of a
stylesheet for variable structured documents15.

In contrast to the metadata used in SEMINF, which was mainly intended for humans, the
semantic web specifically aims at providing metadata that is both accessible for humans as well
as machines. As a result, automatic inferences are more reliable and therefore complex structured
documents are relatively easy to generate (see section 6.5.3 for a qualitative comparison of code
complexity for our three use cases).

14http://www.cwi.nl/˜media/demo/disc/
15Parts of the DISC use-case are previously published in [26, 65].

http://www.cwi.nl/~media/demo/disc/

6.4. DISC 139

For this demonstrator we used the RDF repository that was developed for the Topia project16

in combination with the same Rijksmuseum database we used for ScalAR. Because this repos-
itory is about art and artists we generate biography-like multimedia documents. The repository
contains information about 369 artists and 783 artifacts. For a limited number of artists we com-
plemented the available information with personal relationships, such as spouses and children.
The repository is represented in RDF and consists in total of 71,797 triples.

Similar to the prior use cases, the structure of the remainder of this section follows the
five steps (aggregation, normalization, formatting, serialization and standardization) from the
transformation chain. However, since the normalization, serialization and formatting phase are
similar to prior use cases, we omit a detailed description here. This leaves aggregation, which
elaborates on the method used to generate the structured document, and standardization, which
presents an illustrative example of the generated document form. Finally, in the last section we
synthesize the lessons learned from the DISC demonstrator.

6.4.1 Aggregation

Using a web-form, similar to the ones used for ScalAR and SEMINF, a user selects one of the
369 artists and a document genre, such as personal biography or professional biography. The
document genre is used to determine the rule-set we use to generate the document. A reference
to the topic and the rule-set is sent, together with the properties of the delivery context, to the
Cuypers engine.

The rules in DISC are inspired by the communications models developed by Greimas [70],
which select relevant information from a repository based on a given context. The rules are
grouped in narrative units representing a unit of related information that should be presented
together. Table 6.2 presents an example rule-set that we use to generate a biography of an artist.
The rule-set consists of four narrative units, ‘Biography’, ‘Personal Information’, ‘Career’, and
‘Artefact’, containing in total 11 rules, numbered 1 to 11. At the time of implementation, no
standard to describe rules on the web was availabel, so we choose to represent our rules in
RDF17.

The rules use the concept of an actor, which denotes the topic within the scope of the nar-
rative unit and a role, which signifies the relevant domain properties related to the actor in this
context. For example, suppose the topic of the biography is Rembrandt. In this case Rembrandt
is an actor in the role of ‘main character’ (‘main’ in table 6.2). For the section on personal in-
formation, rule #3 states that the relevant domain properties (‘Props.’ in table 6.2) are name,
birth-year and death-year. However, if the biography is instead about Rembrandt’s wife,
Saskia, then ‘Rembrandt’ can still be an actor, but now with the role of ‘spouse’. Rule #6 states
that the relevant domain properties are then: name and marriage-date. If multiple rules match
an actor and role in a narrative unit, such as rules #1 and #2, then they are executed in sequence,
in order of occurrence.

The domain specific information associated with a domain property is passed on as a class
attribute value in the PS. This makes the PS data structure itself independent from the domain, but
the style rules may still use this information to create a HFO that conveys the domain semantics

16see http://db.cwi.nl/projecten/project.php4?prjnr=147
17The W3C Rule Interchange Format (RIF) is chartered to produce a core rule language plus extensions

which together allow rules to be translated between rule languages and thus transferred between rule systems
(see http://www.w3.org/2005/rules/wg/charter.html). As of 22 September 2008 an editor’s
draft is available.

http://db.cwi.nl/projecten/project.php4?prjnr=147
http://www.w3.org/2005/rules/wg/charter.html

140 CHAPTER 6. EVALUATION SCENARIOS

Biography (Presentation PS)
Role Relation Progression New role Props. PS
1 main none Personal

Informa-
tion

main none Scene PS

2 main none Career main none Scene PS

Personal Information (Scene PS)
Role Relation Progression New role Props. PS
3 main none none none name,

birth-year,
death-year

Group PS

4 main depicted-in Artefact illustration none Alt. PS
5 main none none none description Alt. PS
6 spouse none none none name,

marriage-
date

Group PS

Career (Scene PS)
Role Relation Progression New role Props. PS
7 main creator Artefact main none Comp. PS

Arte-fact (Composite PS)
Role Relation Progression New role Props. PS
8 caption none none none date,

title,
material,
size

Group PS

9 main none Artefact caption image Group PS
10 main none none none description Alt. PS
11 illustration none none none image, title Group PS

Table 6.2: Narrative units and their associated rules.

as the stylesheet designer sees fit.
The role (e.g. ‘main character’) and narrative unit (e.g. ‘private life) are included as class

attributes in the corresponding presentation structure. This way, the style rules can adapt the
styling of the HFO representing the PS based on its specific function. For example, the rule
that selects the domain properties birth-year and death-year for ‘Rembrandt’ in the role
of ‘main character’ is associated with the presentation structure Group PS, which expresses that
both properties should be presented as a unity.

The Alternative PS allows an author to indicate alternative presentation structures to convey
a particular function. This is typically used when multiple versions of essentially the same
media item are available, such as images with different resolutions or videos using different
encoding schemes. For example, rule #4 in table 6.2 selects an illustration that portrays the main

6.4. DISC 141

character. However, there may be multiple illustrations with potentially different resolutions
available. The Alternative PS allows to postpone the decision as to which illustration to select
until the properties of the delivery context are known. The Cuypers formatter does not distinguish
between alternatives provided by the author and alternative style rules provided by the designer.

In addition to selecting relevant domain properties, a rule can also trigger the execution of
rules in another narrative unit, producing a progression of the biography. For example, rule
#1 in table 6.2 states that if the actor plays the role of ‘main character’ then the biography
progresses with the ‘Personal Info’ narrative unit. In this case the actor and its role remain the
same. However, rule #4, which additionally specifies a relation depicted-in, changes the actor
to the object of the depicted-in relationship (provided that the current actor is associated with an
object through a ‘depicted-in’ relationship). For example, if the current actor Rembrandt has a
depicted-in relationship with an object depicting Rembrandt, then the biography progresses
with the narrative unit ‘Artefact’ where the current actor is the object depicting Rembrandt in the
role of ‘illustration’.

Finally, a narrative unit is associated with a presentation structure, which conveys the func-
tion of the narrative unit in the multimedia document. For example, the narrative unit ‘Personal
Info’ is associated with the presentation structure Scene PS.

6.4.2 Normalization
During the normalization phase the aggregated structured document is transformed into the pre-
sentation structures (PS) that may be processed by the Cuypers formatter. Since the aggregation
phase already generates these directly, no additional transformation is necessary for DISC.

6.4.3 Formatting
During the formatting phase the PS representing the structured document is transformed to its
corresponding HFO. Since the formatting phase is discussed in prior use-cases we omit a detailed
description here.

6.4.4 Serialization
During the serialization phase the document form is serialized from the Prolog representation
used by the formatter to an XML format that can be further processed by the transformation-
chain. Because there is no significant difference compared to the serialization phase of the
ScalAR (and SEMINF) demonstrator, we omit a detailed description here.

6.4.5 Standardization
The last stage of the transformation transforms the HFO representation in XML to a format that
can be rendered by the third party player of the client.

Figure 6.15 presents a screen shot of the final SMIL presentation that is generated by the
DISC demonstrator. The screen shot presents a scene from a biography of Rembrandt related to
his work.

6.4.6 Discussion
Below, we give a short account of the lessons learned during the development of DISC.

142 CHAPTER 6. EVALUATION SCENARIOS

Figure 6.15: Screen shot of RealPlayer playing a biography of Van Gogh generated using the
DISC demonstrator. The screen shot shows a fragment of the “Personal Information” scene,
which is followed by a scene on the professional “Career” of van Gogh.

Impact of complex structured documents on the Cuypers formatter

In contrast to the prior use-cases ScalAR and SEMINF, DISC generates a dynamic (whereas
ScalAR was static) and relatively large (whereas SEMINF is small) structured document. As
a result, the formatting phase may be considered more challenging than the prior use-cases.
Table 6.3 shows statistics gathered for variable queries and a static delivery context using the
DISC demonstrator. The #PS column denotes the number of PSs in the generated structured
document.

Furthermore, #HFO denotes the number of HFOs in the document form. In general, the
number of PSs is indicative of the number of HFOs, as in most cases a PS is transformed to a
single HFO. However, there are exceptions. For example, the formatter may decide to suppress
the transformation from a PS with low priority in case there are insufficient spatio-temporal
resources. Or, an author may have specified an Alternative PS to indicate that, for example, an
image is available in multiple resolutions. Because the formatter selects one of the potential
alternatives the number of HFOs may be less than the number of PSs.

The third column denotes both the total number of potential solutions and the number of
potential solutions tried before the formatter was successful. The total number of solution is
relatively heterogeneous, which is an indication that the structured document is heterogeneous.
In contrast, the number of solutions tried is relatively low, which means the constraints imposed
by the delivery context are relatively light and a solution could be found easily. This is also
reflected in the last column, which denotes the formatting time.

Although in section 6.5 we discuss the performance of the system in more detail, we can
already observe that the formatting time seems to be directly related to the number of alternative

6.4. DISC 143

screen size #P
S

#H
FO

#t
ri

ed
/

#t
ot

al

tim
e

(s
ec

)

Bol 42 42 3/864 6.74
Goltzius 38 38 5/288 8.57
Steen 42 40 9/864 9.97
Mostaert 31 31 9/216 10.12
Gogh 35 35 9/648 10.87
Rembrandt 51 40 9/2592 12.08
Terborch 38 36 9/288 14.03

Table 6.3: Statistics of the DISC demonstrator executing variable queries (screen size is 1024×
768)

solutions tried. Therefore, the scalability boundaries of the Cuypers formatter are due to the
number of alternative solutions tried rather than the complexity of the structured document.

Domain semantics at relatively low costs

Previously described presentation generation systems, such as Artequakt [89] and DArtbio [18]
are adapted to present information within a particular domain (see section 2.3.2). These systems
have the advantage that they are adapted to the specific context of the application. Other pre-
sentation systems, such as Noadster[128] and Autofocus, present information independently of
domain semantics (see section 2.2.3). These systems have the advantage that they can be applied
to a large range of application contexts.

In software engineering, domain dependencies are often avoided when possible because they
reduce the potential application domain of the system. Compare this to document engineering,
which attempts to identify domain dependencies and describe them explicitly in a structure doc-
ument or stylesheet. By adapting the stylesheet or structured document a document engineering
system can be adapted to a specific domain at relatively low costs.

The DISC system follows the document engineering principle by representing relevant do-
main relationships, and the way they should be conveyed, in rules that are specified externally to
the system. By modifying the rules the DISC system can be adapted, at relatively low cost, to
convey particular domain semantics for other application contexts.

Designing form conventions for complex structured documents

Similar to text-based documents a complex structured document is typically used to represent a
fine grained discourse structure. For a reader to grasp the details of the discourse it is important
that form conventions used to convey these details are properly represented. One of the principles
a designer uses to achieve this are repetition and consistency, which states that objects with a
similar function should be presented similarly. Within the Cuypers formatter we can respect
this principle for a group of PSs that share a parent because the resulting HFOs are explicitly
grouped (i.e. contained) within their parent. As a result we may impose consistency constraints
on the children when the parent is created. In contrast, the group of PSs that do not share a
parent are not explicitly represented in the containment hierarchy of HFOs in the document
form. Consequently, it is impossible to impose explicit constraints on the members of such an

144 CHAPTER 6. EVALUATION SCENARIOS

orthogonal group (see section 4.4.2 on page 84). Within the DISC demonstrator this deficiency
becomes apparent. For example, the formatter has alternative rules that position a description
either below or to the right of a figure. Depending on the available real-estate the formatter
decides the position of the description on a case by case basis. Since there are often multiple pairs
of figure and description the position of the description in the final presentation seems random
and gives a chaotic impression. Worse, if the position of the description is homogeneous except
for an incidental exception, a reader most likely will interpret the exception as semantically
significant, which was not intended by the author.

The simplistic solution is to disallow alternative positioning for figure description pairs,
which will ensure consistent presentation (if possible). However, this decreases the adaptability
of the multimedia document, which is undesirable. In addition, a completely consistent design
is typically not completely satisfactory either. A designer of a multimedia document may vary
the theme of the form convention to keep the interest of the user. Nevertheless, the form con-
ventions should be sufficiently similar to allow the reader to recognize them as being the same.
To support such features, explicit grouping of arbitrary HFOs should be possible. Furthermore,
the formatter should be able to infer whether the document function is satisfactorily represented,
both, on the level of individual media items as well as in the context of a multimedia document
as a whole.

We conclude that the Cuypers formatter successfully transforms the complex and relatively
large structured documents generated by DISC. However, to ensure that structured documents
that exceed this complexity are properly represented by the resulting document form, more ad-
vanced grouping and constraints mechanism are necessary.

6.5 Performance analysis
Performance of the formatter is important in a web context where the document form is typi-
cally generated on the fly. Therefore, in this section we present the performance analysis of our
Cuypers formatter applying the document engineering paradigm.

Because the influence of the delivery context on the formatting process is similar in all three
use cases, we focus our analysis of the performance under different delivery contexts on the
ScalAR use case. Since the DISC demonstrator generates more heterogeneous structured docu-
ments compared to the prior demonstrators, we use the DISC demonstrator to analyze the per-
formance under the reuse of style. A complete overview of performance measurements for all
three demonstrators is given in appendix B.

The machine we used to take these measurements runs on a Intel Pentium 1.70GHz proces-
sor, with 1GB of RAM memory. The operating system is Linux (Fedora Core 5) with a 2.6.20
kernel18.

6.5.1 Automatic adaptation to the delivery context
The first set of measurements uses a single structured document and a variable delivery con-
text. Table 6.4 lists performance measurements of the ScalAR demonstrator, executing the query

18The reported times are doubled when using the on-line demonstrator. This is because the browser applica-
tion requesting the document typically does not have built-in support for SMIL but needs a helper application
to render the document. Once it receives the document and recognizes the unsupported document format (e.g.
SMIL) it launches the helper application (e.g. RealOne Player), which is passed the URL of the document. The
helper application then requests the document again before it gets rendered.

6.5. PERFORMANCE ANALYSIS 145

screen size ag
gr

eg
at

io
n

no
rm

al
iz

at
io

n

fo
rm

at
tin

g

se
ri

al
iz

at
io

n

st
an

da
rd

iz
at

io
n

total
600× 600 0.02 0.01 6.13 0.43 0.41 7.00

600× 900 0.02 0.02 4.48 0.42 0.41 5.35
600× 1200 0.02 0.01 4.49 0.43 0.41 5.36
600× 1500 0.03 0.01 4.54 0.44 0.43 5.45

800× 600 0.03 0.01 3.52 0.43 0.41 4.40
800× 900 0.02 0.01 3.50 0.43 0.41 4.37
800× 1200 0.02 0.01 3.47 0.42 0.46 4.38
800× 1500 0.03 0.01 3.46 0.46 0.39 4.35
1500× 600 0.02 0.01 3.24 0.45 0.45 4.17
1500× 900 0.03 0.01 3.29 0.46 0.44 4.23
1500× 1200 0.03 0.01 3.34 0.47 0.44 4.29
1500× 1500 0.02 0.02 3.29 0.46 0.44 4.23
2000× 600 0.02 0.01 3.21 0.43 0.40 4.07
2000× 900 0.03 0.01 3.28 0.45 0.44 4.21
2000× 1200 0.03 0.01 3.29 0.45 0.44 4.22
2000× 1500 0.02 0.02 3.29 0.44 0.44 4.21

Table 6.4: Performance measurements (in seconds) of the ScalAR demonstrator executing the
query “Rembrandt van Rijn” and “Chiaroscuro”. The double lines indicate groups that have
similar formatting times (indicated in bold).

“Rembrandt and Chiaroscuro”. The first column specifies the screen size of the delivery con-
text19. We selected screen sizes that result in significantly different presentations for this particu-
lar query20. However, since the number of returned images and their sizes might be different for
other queries, these screen sizes do not necessarily result in significantly different presentations
for other queries. The second column specifies the time spent in the aggregation phase, which
aggregates the input for the to-be-generated structured document. The third column specifies the
time spent in the normalization phase, which generates the presentation structures. The fourth
column specifies the time needed for the formatting, that is, the transformation from presentation
structures to their corresponding hypermedia formatting objects. This includes the generation
and validation of constraints, plus the time needed to invoke alternative style rules if necessary.
The fifth column lists the time needed to serialize the HFO tree to an XML format. Finally the
sixth column contains the total execution time of the system. All recorded times, except for the
formatting (indicated in table 6.4 in bold font), are relatively homogeneous. We conclude that
the performance of the formatting phase is the phase most sensitive to adaptation.

Furthermore, multimedia documents that are adapted to a relatively large screen are pro-

19Other dimensions, such as bandwidth or expertise, do not influence the spatio-temporal constraints and
therefore do not influence the execution time significantly.

20Two presentations are significantly different if the formatter uses at least one different style rule to generate
the document form.

146 CHAPTER 6. EVALUATION SCENARIOS

screen size #m
ed

ia

#P
S

#H
FO

#c
on

st
ra

in
ts

#t
ri

ed
/#

to
ta

l

tim
e

(s
ec

)

600× 600 17 30 30 3950 10/36 7.00

600× 900 17 30 30 3950 6/36 5.35
600× 1200 17 30 30 3950 6/36 5.36
600× 1500 17 30 30 3950 6/36 5.45

800× 600 17 30 30 3950 2/36 4.40
800× 900 17 30 30 3950 2/36 4.37
800× 1200 17 30 30 3950 2/36 4.38
800× 1500 17 30 30 3950 2/36 4.35
1500× 600 17 30 32 4228 1/36 4.17
1500× 900 17 30 32 4228 1/36 4.23
1500× 1200 17 30 32 4228 1/36 4.29
1500× 1500 17 30 32 4228 1/36 4.23
2000× 600 17 30 32 4228 1/36 4.07
2000× 900 17 30 32 4228 1/36 4.21
2000× 1200 17 30 32 4228 1/36 4.22
2000× 1500 17 30 32 4228 1/36 4.21

Table 6.5: Statistics of the ScalAR demonstrator executing the query “Rembrandt van Rijn” and
“Chiaroscuro”

duced faster than those adapted to smaller screens. This can be explained by the order in which
alternative style rules are invoked. For example, consider two style rules, one that produces an
HFO optimized for a relatively small screen and a second that produces an HFO optimized for a
larger screen. Since an HFO that satisfies the constraints imposed by a small screen necessarily
satisfies the constraints imposed by a larger screen, the first style rule that optimizes an HFO
for a smaller screen can be successfully invoked in both cases, despite that in the latter case the
available spatial resources are not optimally used. In contrast, if the second style rule is invoked
first then it either succeeds, resulting in an HFO optimized for a large screen, or it fails, in which
case the first style, which produces an HFO optimized for a smaller screen is invoked. As a
result, the formatter produces a multimedia document for relatively large screens faster than for
smaller screens.

To analyze the formatting phase in more detail, we consider table 6.5. The first column again
specifies the screen size of the presentation, corresponding to the same screens as in table 6.4.
The second column presents the number of media items that are used in the multimedia docu-
ment. In this case the query is constant and therefore the number of media items is equal for
each case. The third column presents the number of generated presentation structures (#PS).
Since presentation structures are independent of the delivery context this number is again the
same for each case. The fourth column denotes the number of hypermedia formatting objects
that were generated (#HFO). Although the structured document is identical the number of HFOs
in the document form may differ. This is because different style rules may be used to generate
the document form. For example, the children in a Group PS may be all presented in a single

6.5. PERFORMANCE ANALYSIS 147

Box HFO, or alternatively, be split into two separate Box HFOs. The fifth column represents the
number of constraints that were generated. The sixth column represents both the number of the
solutions tried and the total number of possible solutions. The number of solutions is calculated
based on the number of failed style rules. The total number of solutions is a theoretical upper
bound representing all the possible presentations that can be generated based on the given struc-
tured document and style rules. However, if two solutions satisfy the same delivery context, the
second solution, despite that it might be a “better” solution, will not be proposed because of the
depth-first backtracking mechanism used. The seventh column denotes the same total execution
time as presented in table 6.4.

The groups indicated by double lines in table 6.5 correspond to the groups indicated in ta-
ble 6.4. Note the number of failed style rules (indicated in bold). We may conclude that the
number of failed style rules is responsible for the increase in generation time of the formatter.
This is explained by Prolog’s depth-first backtracking behavior, which, once a failure occurs, re-
turns to the last applied style rule with an alternative, disregarding the part of the transformation
that was performed after this alternative style rule. If an alternative style rule succeeds imme-
diately the disregarded part of the transformation is relatively small and doesn not significantly
influence the performance. If, however, the alternative style rule fails as well, the formatter
backtracks to the alternative style prior to that, disregarding a larger part of the transformation.

6.5.2 Reuse of style

subject ag
gr

eg
at

io
n

no
rm

al
iz

at
io

n

fo
rm

at
tin

g

se
ri

al
iz

at
io

n

st
an

da
rd

iz
at

io
n

total
Bol 0.04 0.02 6.74 0.67 0.67 8.14
Goltzius 0.04 0.01 8.57 0.62 0.55 9.79
Mostaert 0.03 0.01 10.12 0.46 0.45 11.07
Steen 0.05 0.01 9.97 0.67 0.65 11.35
Gogh 0.04 0.01 10.87 0.59 0.51 12.02
Rembrandt 0.07 0.02 12.08 0.65 0.65 13.47
Terborch 0.05 0.01 14.03 0.60 0.58 15.27

Table 6.6: Performance measurements (in seconds) of the DISC demonstrator executing variable
queries (screen size is 1024× 768)

The second set of measurements uses different structured documents from the DISC use
case. The same style sheet is reused, and applied with a constant delivery context, as shown
in Table 6.6. The first column represents the subject of the generated biographies. The other
columns correspond to the columns of table 6.4.

Similar to the ScalAR demonstrator, most time is spent in the formatting phase. In table 6.7,
the first column again represents the subject of the biography as in table 6.7. The remaining
columns correspond to the columns of table 6.5.

Although the delivery context is constant, the number and sizes of the media items used

148 CHAPTER 6. EVALUATION SCENARIOS

subject #m
ed

ia

#P
S

#H
FO

#c
on

st
ra

in
ts

#t
ri

ed
/#

to
ta

l

tim
e

(s
ec

)

Bol 20 42 42 5580 3/864 8.14
Goltzius 18 38 38 5048 5/288 9.79
Mostaert 15 31 31 4113 9/216 11.07
Steen 20 42 40 5304 9/864 11.35
Gogh 17 35 35 4645 9/648 12.02
Rembrandt 20 51 40 5304 9/2592 13.47
Terborch, Gerard 18 38 36 4772 9/288 15.27

Table 6.7: Statistics of the DISC demonstrator executing variable queries (screen size is 1024×
768)

may vary. Consequently, the application of a style rule may fail. Similar to the adaptation to
the delivery context the formatter applies an alternative style rule to compensate for the format-
ting failure. So from a performance perspective, varying the input document while keeping the
delivery context constant is, in our scenarios, not inherently different from varying the delivery
context while keeping the input document constant.

6.5.3 Comparison of the three scenarios

Code-base #Lines #Predicates
Cuypers formatter 6147 537
ScalAR 698 22
SEMINF 751 34
DISC 441 14

Table 6.8: Source-code statistics (19-10-2007) “Cuypers formatter” represents the common
code-base. “ScalAR”, “SEMINF” and “DISC” represent the code specific for the respective
scenario

Table 6.8 presents statistics on the Cuypers engine code-base (code in SWI-Prolog and
Logtalk). Cuypers represents the code that is common for all use-cases and ScalAR, SEM-
INF and DISC represent the code-base specific for each use-case. #Lines presents the number of
lines in the code and #predicates represents the number of predicates in the code.

In contrast to ScalAR and SEMINF, the DISC system has, except for the generated title,
the logo and background-music, no prior knowledge on the domain. As a result, the system
does not make any assumptions on the available domain data, but deals with the availability of
data based on the success or failure of generic rules. This approach results in code that is better
suited for heterogeneous data and possibly erroneous data. In contrast, ScalAR and SEMINF,
which are domain dependent, deal with heterogeneous and possibly inconsistent data on a case

6.5. PERFORMANCE ANALYSIS 149

by case basis. As a result, the ScalAR and SEMINF code bases are obfuscated by code dealing
with the large number of exception cases. This is reflected in table 6.8, which shows that the
number of lines and the number of predicates for DISC is significantly smaller than for ScalAR
and SEMINF.

scenario performance #m
ed

ia

#P
S

#H
FO

#c
on

st
ra

in
ts

#t
ri

ed
/#

to
ta

l

tim
e

(s
ec

)

ScalAR best 5 10 12 1590 1/27 1.14
worst 16 26 28 3686 2/18 4.22

SEMINF best 13 19 27 3581 2/36 3.74
worst 22 37 46 6112 109/2916 38.69

DISC best 20 51 42 5580 1/2592 8.38
worst 19 51 36 4762 2320/2592 153.87

Table 6.9: Best and worst performance of ScalAR, SEMINF and DISC. (For each use-case the
query is constant)

Table 6.9 presents the best and worst recorded times for our three use-cases. Based on this
data we make two observations. Firstly, the performance of the formatter linearly decreases with
more complex structured documents. We use here the number of generated PSs as a metric for
the complexity of a structured document (#PS column).

A second observation is that the performance of the formatter significantly deteriorates due
to failing style rules. When using a depth-first backtracking strategy, a failing style rule early in
the transformation is relatively harmless since the scope of the style rule is limited, however, the
performance penalty increases with the scope of the style rule. For example, the style rule that
attempts to format the example images using a horizontal-box HFO fails after it tried all pos-
sible alternatives within its scope. This includes, for all example images, alternative positions
for the associated caption (e.g. caption left-of image, caption right-of image, caption below im-
age). Unfortunately, the alternative style rule that attempts to format the example images using
a vertical-box HFO fails as well (including the previously mentioned alternatives to position the
caption of an image). Furthermore, some of the alternatives do not make sense in the current
context. For example, positioning the caption beside the image in a horizontal-box HFO will
not lead to a solution if positioning the caption below the image already failed because both
cases require the same amount of spatial resources. However, due to the depth-first strategy the
formatter cannot adapt the order in which the style rules are applied, resulting in an inefficient
strategy in these cases. Future versions of the formatter may attempt to minimize the probability
of a style rule failing by selecting the style rule that is most likely to succeed. For this a best-first
approach may be used that selects the next style rule based on a utility function that predicts the
style rule that has most chance of succeeding.

Note that a best-first strategy may also be used to improve the quality of the multimedia doc-
ument (see section 4.2.3). Typically, the metric responsible for selecting the style rule is different
for both cases. This might lead to contradictory style rules, one favoring quality above efficiency.
Therefore, more research is needed for specifying directives that resolve such contradictions.

150 CHAPTER 6. EVALUATION SCENARIOS

6.6 Conclusion
The extended document engineering model intends to reduce authoring and designing time for
multimedia documents by applying the document engineering paradigm to multimedia docu-
ments. In the previous chapter we presented the Cuypers framework, which implements the
extended document engineering model and provides a system to apply the document engineer-
ing paradigm. In this chapter, we validated the model and the corresponding framework by the
successful implementation of three scenarios that use the Cuypers framework. We showed that
a single structured document can be adapted to various delivery contexts while the document
function is preserved. Furthermore, multiple heterogeneous structured documents may be trans-
formed to document form using a single stylesheet ensuring a consistent document form.

Although our framework successfully validates our model by demonstrating the document
engineering paradigm applied to multimedia documents, these results are obtained in a relatively
controlled environment. However, there are practical and conceptual concerns, which currently
prevent implementing the paradigm on a larger scale:

Stylesheet complexity The “authoring” complexity for a designer of a stylesheet increases if
the structure of the structured document is transformed in the document form. Compare,
for example, the relatively simple CSS vocabulary, which preserves the structure of the
structured document, to XSL(T), which is sufficiently expressive to adapt the structure of
the document form. In addition, the designer of a stylesheet used to generate a multimedia
document also needs to consider the potential failure of a style rule. As a result, the
design of a stylesheet for multimedia documents is significantly more complex than for
text-based documents.

Sparse form conventions Compared to text-based documents, multimedia documents cannot
be considered main stream. This is contradictory to our assumption that there would be
as much need for publishing multimedia documents as there is for publishing HTML doc-
uments, which was the main motivation for starting this work. Although the number of
non-textual media increased, mono-media websites (e.g. Flickr, YouTube) are currently
still dominant. As a result, form conventions for multimedia documents are not as well
established as they are for text-based documents. Consequently, identifying form conven-
tions that may be reused, is not evident.

Not optimized for third party users On a number of occasions people expressed interest in the
Cuypers software. However, despite our efforts to package the software for distribution,
the prototypical nature of the Cuypers formatter prevented successful adoption by third
parties. In order to implement the Cuypers framework on a large scale significant effort
needs to be spent in optimizing the framework for third party usage, such as the including
documentation and examples.

Besides validating the model, we showed that the performance of the Cuypers framework
is sufficiently efficient for the three implemented scenarios. For more complex structured docu-
ments, the depth-first backtracking strategy approach used to select and invoke alternative style
rules is insufficiently efficient. More research is necessary to effectively balance style rules that
favor quality versus style rules that favor efficiency in a best-first backtracking strategy.

Chapter 7

Conclusion

Document engineering technology is highly popular and commonly used for text-based docu-
ments. In contrast, multimedia documents are typically still authored on a case by case basis and
therefore expensive to produce. In this thesis we have explored to what extent it is possible to
apply document engineering techniques to multimedia content: can we separate form and func-
tion in the realm of multimedia documents, and use style sheets to automatically generate the
form that communicates the function encoded in a structured multimedia document?

Given the state of the art in the research literature and the systems in use at the time of
writing, we compiled a set of requirements that need to be met in order to make this possible.
Based on these requirements, we describe a model, which defines three key ingredients:

Structured document A structured document captures the functional intention of the multime-
dia author.

Document form The document form represents these functional intentions in a particular de-
livery context.

Stylesheet In a stylesheet a designer describes how the first (function) can be transformed auto-
matically into the second (form).

To put our model to the test, we studied three use cases, for which we implemented the full
transformation. The iterative design process used for the various implementations allows us to
identify the code common to all use cases, which constitutes the core of our Cuypers architecture.
Finally, we describe the lessons learned from the three uses cases.

Based on our requirements, model, framework and practical experience we can now revisit
the research question posed in the first chapter.

7.1 The research questions revisited
Research question 1 (REQUIREMENTS). What are requirements for an extended document en-
gineering model and processing framework that include support for multimedia documents?

Based on the state of the art in related research areas, we formulated a list of requirements in
chapter 3 that should be satisfied for a document engineering model and processing framework

151

152 CHAPTER 7. CONCLUSION

that includes multimedia documents. Requirements 1 − 3 identify the desired document engi-
neering properties, reuse of authoring and design effort, by separating document function from
its form.

For text-based documents typesetting algorithms, such as hyphenation, ensure that the doc-
ument form can be automatically adapted to a large variety of delivery contexts (provided that
there is no constraint on the number of pages). Such generic strategy for multimedia documents
does not exist, which explains why available text-based document engineering technology can-
not be applied to multimedia documents. Therefore, requirements 4 − 5 explicitly state that the
document form should respect the constraints imposed by the delivery context.

Requirements 6− 8 identify the properties of transformation rules that transform document
function to document form. Similar to text based document engineering, although less explicit,
these include a default style rule, which transforms media items represented in the structured
document to its corresponding form. Because there is no generic overflow strategy for multi-
media documents the successful application of a style rule (i.e. respecting requirements 4 − 5)
cannot be guaranteed a priori for multimedia documents. Therefore, an additional requirement
states that a designer should be able express alternative style rules in case a prior one failed.

The possibility that a style rule may fail has consequences for the vocabularies used to rep-
resent the structured document and the document form. These are identified by requirements
9 − 11. Notably, the formatter should have sufficient information to detect a formatting failure.
Furthermore, the formatter should have directives to prioritize information in order to preserve
the intended function of the author as best as possible.

Finally, as document engineering technology is particularly desirable in a Web environment
due to its heterogeneous delivery contexts, requirement 13 identifies the properties of a document
engineering framework that is applicable on the Web. The most notable difference compared to
text-based document engineering frameworks is that the formatting of multimedia documents
is performed server-side. The advantage of this approach is that no unrealistic standardization
requirements on the document form are required.

Based on the requirements 1−11 above we formulated an extended version of the traditional
document engineering model. The more practical requirements 12− 13 apply more directly to a
software architecture built to implement the model.

Research question 2 (MODEL). What are the properties of such an extended document engi-
neering model?

Our extended model, described in chapter 4, and the traditional document engineering model
share the same goal: reducing authoring and design effort by separating form and function. The
content and its functional structure should be encoded by the author in a structured document,
of which the style and layout is defined by style rules encoded in a separate stylesheet. To-
gether, a structured document and a corresponding stylesheet should contain sufficient informa-
tion to generate a final document form automatically. Our model can be characterized by two
key extensions. First, where the traditional model implicitly assumes that every style rule can
be successfully applied at run time, we explicitly model how the transformation should behave
when the application of a style rule fails. Second, the differences in the spatio-temporal layout
of the resulting form require a vocabulary that is sufficiently expressive for describing the form
of multimedia documents. The properties of these two extensions are defined in chapter 4 and
are summarized below:

Explicit spatio-temporal layout We explicitly model the spatial and temporal layout of the

7.1. THE RESEARCH QUESTIONS REVISITED 153

document form by extending the traditional two dimensional bounding box model to three
dimensions to account for temporal layout.

Explicit delivery context The delivery context defines the constraints imposed by the environ-
ment in which the document is perceived, to the extent that they may influence the for-
matting of the document. Typical examples include the maximum size of the document
form, or the (in)ability of the target device to play a specific media type. In the traditional
model, the delivery context remains implicit. In our model, the delivery context explic-
itly models the information required to ensure that a document form is appropriate to the
reader’s environment. Note that on the Web, this type of information is not available at
authoring time.

Explicit constraint handling and alternative style rules Each style rule being applied may vi-
olate the constraints defined by the delivery context. We model the detection of these
violations explicitly, as well as the selection of alternative rules to resolve the constraint
violations. Furthermore, we account for the possibility that not all media items can be
presented, and assign explicit priorities to allow the system to make informed decisions
about removal of media items.

Modality-dependent default style rules Typically, media items represented in a structured doc-
ument do not have an explicitly described style rule, which transforms them to their corre-
sponding form. Similar to the text-based model, in this case a generic default style rule is
applied. However, in contrast to the traditional model, heterogeneous media items cannot
be treated in a similar fashion (e.g. audio and image have few common properties). Our
model takes this into account by allowing multiple default rules to be defined, depending
on the modality of the content.

Explicit modeling of media items and metadata The properties of media items (e.g. size, modal-
ity) contain crucial information to detect constraint violations. Unlike the traditional docu-
ment engineering model, which is agnostic about metadata, we model metadata explicitly
in the structured document. Furthermore, we explicitly preserve metadata that is available
to the structured document in the generated document form. This way we maximize the
chances that the results of our transformations can be reused by other applications on the
Web.

Research question 3 (FRAMEWORK). What are the properties of a software architecture that
implements the formatter of the extended document engineering model, and fulfills the require-
ments imposed by a web architecture?

Document engineering is especially desirable in a Web context. However, the particular
architecture of the Web adds architectural requirements on the framework that implements our
model. The properties of this architecture are defined in chapter 5 and are summarized below:

Server-side formatting Unlike most other Web document formats, where the exact dimensions
and positioning of the bounding boxes of the content is often determined at delivery time
by the Web client, for multimedia documents this is typically done at authoring time at the
content provider’s side. To achieve the required flexibility needed to adapt the document
form to the constraints of the client, without the need to change the client, a key property
of the Cuypers architecture is its ability to calculate all bounding boxes at the server side,
informed by the client’s constraints as described by the delivery context.

154 CHAPTER 7. CONCLUSION

Standardized delivery context In a Web context server and client are independent entities and
communicate through standardized formats and protocols. Consequently, the delivery
context describing the properties and preferences of the client-side should be sent in a
standardized format to the server. Although standardization efforts are well on their way,
at the moment of writing relatively few clients implement these standards1. As a result,
server-side applications that use information from the delivery context, still require a client
to explicitly describe its delivery context in a proprietary format.

7.2 Lessons learned
During the implementation of the use cases described in chapter 6, we learned several lessons
we think are worthwhile documenting for other (future) applications in this area:

Multimedia design dependencies on several levels of abstraction The vocabularies currently
implemented by Cuypers to encode the structured documents (PS), document form (HFO)
and style sheet are proof-of-concept vocabularies that might require additions or changes
in the future. Here, we mainly observe that the current state of the art makes it much easier
to design vocabularies for multimedia document form, while good abstractions to encode
multimedia document structures are still in their infancy. Also, our transformation based
on constraint solving is a proof-of-concept. We claim that the delicate dependencies in
this constraint model are typical multimedia design problems: relatively high-level design
decisions (such as the decision to include a specific media item or not) may depend on
very low level issues in other parts of the presentation (e.g. another media item being a
few pixels too wide or a few seconds too long). Further research is needed to gain more
insight in these type of dependencies, not only to better balance high and low-level design
decisions, but also to find better trade-offs when mixing aesthetic and functional design
decisions.

Web formats serves interoperability To practically employ document engineering technology
on the Web, an important property of the underlying software is that it can be fully inte-
grated into the Web. For example, all Cuypers code can be embedded, in several ways, in
a Web server. We have used Cuypers as a standalone Web service, fully implemented in
SWI-Prolog using Prolog’s native HTTP library. Other common configurations include
running Cuypers behind a firewall (providing access only through an off-the-shelf web
server such as Apache), or, as a single step in a larger Cocoon XML processing chain (us-
ing Tomcat or another of the shelf Java servlet container). In all configurations, Cuypers
communicates with the external world using commonly accepted Web formats wherever
possible: common media formats and RDF metadata as its input, and various flavors of
SMIL as its main output format.

7.3 Discussion and remaining challenges
At the end of this thesis, we take a step back and look at our work in a wider context. Two topics
are worth discussion: the role of the designer in the development of multimedia content, and the
role of multimedia on the Web:

1http://www.w3.org/TR/2009/WD-dcontology-20090616/

http://www.w3.org/TR/2009/WD-dcontology-20090616/

7.3. DISCUSSION AND REMAINING CHALLENGES 155

Form versus function: Designing multimedia content Designing high quality multimedia con-
tent requires very special skills that are hard to overestimate. Good designers are knowl-
edgeable in the formulation of the message, the choice of the medium that is best suited
to convey that message, the different ways that determine how that message can be best
conveyed using the medium of choice, and the technical specifics of using that medium.
Typically, designers are confronted with design problems that require difficult trade-offs
among the interests of different parties involved (e.g. the interests of the content owners
versus those of the end users), trade-offs among different design goals (e.g. aesthetics
versus functionality) and trade-offs mixing different abstraction levels (e.g. high-level de-
cisions on the overall look and feel versus the pixel-level constraints of a single media
item). The many levels of dependencies between form and function in multimedia make
separating the two much harder than in most text-based applications.

Areas where style sheets are currently successful are those applications where all the im-
portant trade-offs are made by the designer, and the machine only needs to make relatively
small design decisions (e.g. where to break a line of HTML text given the current width
of the browser window). The downside of this success is that most of these applications
break down when the high-level design decisions taken are no longer appropriate for a
dramatically changed delivery context. For example, many Web pages do not scale to
appropriately reflect the current browser width, and those which do often break down for
extremely small widths (and thus work suboptimally for many mobile devices). The re-
sults presented in this thesis show that it is, in principle, possible to develop applications
that can make more higher-level design decisions automatically. It also shows, however,
that making such design decisions is significantly more complex than the decisions taking
by, say, a processor that processes CSS style sheets. Our works shows that a model that
is able to make the intricate trade-offs that are typical in many layout and style decisions,
would require much more research. To be practically applicable, such a model should also
be usable by designers. This will not only put high requirements on the usability of such
a model, it would also require a paradigm shift in media design. While many text authors
now understand the advantages of separating content and style, for multimedia there is
still a long way to go.

The role of multimedia content on the Web Looking back, multimedia on the Web did not
quite develop in the way we expected when we started the research described in this the-
sis. In the late eighties, the success of the CD-ROM, the increased speed of CPUs, high
resolution and full color graphics cards and high quality sound cards made complicated
multimedia presentations relatively popular, especially in educational and entertainment
purposes. In the late nineties, the relatively static text and image content of the Web,
when compared to the audiovisual content available on CD-ROM, was widely regarded
as a problem that needed to be addressed. Where the formats used for CD-ROM based
content were typically optimized for a specific target platform, it was clear that on the
Web, a more platform neutral format was required. Standardization of subsequent ver-
sions of SMIL aimed at providing such a platform and vendor-neutral format.

Despite the arrival of formats such as SMIL in 1998, content on the Web remained mainly
static. The network bandwidth for end consumers (the infamous “Last Mile”) did not
increase as rapidly as some had expected, and maybe even more importantly, develop-
ing sound business models for serving multimedia content proved difficult. Serving large
amounts of streaming content involves high connectivity fees, costs that are hard to earn

156 CHAPTER 7. CONCLUSION

back using advertisements – and this situation has not changed much2. Many branches of
the media industry are still fighting to reinvent their business models to cope with new or-
der on the Web. Authoring complex multimedia presentations remains a time-consuming
process requiring special skills, and thus involves typically even higher costs than mono
medium streaming content. Where current simple streamed content is often plagued with
incompatible plug-ins and media codecs, the situation is typically worse for composite
media formats. So unless the business models and player support change significantly, it
is hard to see how composite media formats could become more successful.

Currently, there seems a revival in the interest for multimedia content, mainly in the con-
text of peer-to-peer networks (reducing the network costs) and the “tagging” paradigm of
social content sites (e.g. Flickr, YouTube). Here the focus seems, however, to be mainly
on mono-media streams of audiovisual content, and less on compound streams composed
of multiple individual media items, as discussed in this thesis. So we do not expect that
this trend will change the relatively small amount of structured media content (e.g. SMIL)
on the Web. Similar arguments apply to small amounts of structured graphics (e.g. SVG)
or structured virtual reality and 3D content (e.g. X3D). The focus on single media streams
in the recently started “Video on the Web” activity by W3C3 also fits in this trend. Note
that adaptivity in these audiovisual streams is, if present at all, limited to variations in the
bandwidth requirements and compression techniques used, and a far cry from the more
substantive adaptation techniques discussed in this thesis.

The wider application of the models and tools discussed in this thesis would require a
clearer perceived need for composite multimedia, and its adaptation to a wide variety
of delivery contexts. In the longer term, we expect that as the heterogeneity of Web
clients will continue to increase, so will the need to adapt structured content to different
clients in ways that go beyond the adaptation currently provided by CSS and other text-
based style sheets. Some of the results of this research might therefore also be applicable
to other domains. At the time of writing, for example, most modern Web applications
feature “single page interfaces”, built using AJAX-based GUI toolkits. Currently, the
interfaces developed with most of these widget libraries are hard to adapt to different
delivery contexts, so these toolkits might actually benefit from the constraint-based layout
techniques proposed in this thesis.

The wider application of the results of our research has also been hindered by the lack
of available annotated media content. Partly due to the popularity of web mashups, and
in a broader context of reusing and repurposing media assets, there seems to be growing
consensus4 about the importance of data format interoperability, not only in terms of the
media encoding, but also in terms of the metadata formats and vocabularies used for the
description of the media content. Combined, the increased need for adaptable content,
and the increased availability of annotated assets will also increase the practical relevance
of the work described in this thesis.

2At the time of writing, Google’s video website YouTube is still not profitable:
http://findarticles.com/p/articles/mi_qn4176/is_20070322/ai_n18764215/

3http://www.w3.org/2008/WebVideo/Activity.html
4In 2008, W3C started a Working Group on this topic, see

http://www.w3.org/2008/WebVideo/Annotations/ and
http://www.w3.org/2008/WebVideo/Fragments/

http://findarticles.com/p/articles/mi_qn4176/is_20070322/ai_n18764215/
http://www.w3.org/2008/WebVideo/Activity.html
http://www.w3.org/2008/WebVideo/Annotations/
http://www.w3.org/2008/WebVideo/Fragments/

Appendix A

Hypermedia Formatting Objects

In this appendix we provide a complete overview of the style attributes and delivery context
attributes that are implemented in the Cuypers multimedia document formatter. Note however,
that we do not claim these are all the relevant attributes in the context of multimedia document
formatting.

A.1 Style attributes

Style attributes Type Inherited? Default value
Margin− Left | Right | Top | Bottom Int No Min
Border − Left | Right | Top | Bottom Int No Min
Padding− Left | Right | Top | Bottom Int No Min
Delay− Start | End Int No Min
Min | Max− aspectRatio Float No 0.001
Fill−Width | Height | Duration {Min, Max, Center} No Min
Fill−Margin | Border | Padding {Min, Max, Center} No Min
Align− Horizontal | Vertical | Temporal {Left, Right, Center} Yes Min
Content − Color Int Yes Black∗

Content − BackgroundColor Int Yes Grey∗

Border − Color Int Yes Grey∗

Font − Family Str Yes Helvetica
Font − Style Str Yes normal
Fontsize Int Yes 12
Transition− In | Out − Type Str Yes None
Transition− In | Out − SubType Str Yes None
TransitionIn | Out − Duration Int Yes 0

Table A.1: HFO style attribues (*=string representation) (** also used to calculate the required
spatial surface for a text HFO)

157

158 APPENDIX A. HYPERMEDIA FORMATTING OBJECTS

A.2 Delivery context attributes

Attributes Type Initial
Max-Width (pixels) Int 1024
Max-Height (pixels) Int 768
Max-Duration (seconds) Int 200
Bandwidth {Fast, Medium, Slow} Fast
Language (code) Int English∗

Expertise level {1, 2, 3, 4, 5} 1
Interactivity level {1, 2, 3, 4, 5} 1
Output format String SMIL2
Read speed (words per minute) Int 180
Stylesheet String default

Table A.2: Delivery context (*=string representation)

Appendix B

Performance Statistics

The machine we used to take these measurments runs on a Intel(R) Pentium(R) M 1.70GHz
processor, with 1GB of RAM memory. The operating system is Linux (Fedora Core 5) with a
2.6.20 kernel

screen size ag
gr

eg
at

io
n

no
rm

al
iz

at
io

n

fo
rm

at
tin

g

se
ri

al
iz

at
io

n

st
an

da
rd

iz
at

io
n

total
600× 600 0.02 0.01 6.13 0.43 0.41 7.0
600× 900 0.02 0.02 4.48 0.42 0.41 5.35
600× 1200 0.02 0.01 4.49 0.43 0.41 5.36
600× 1500 0.03 0.01 4.54 0.44 0.43 5.45
800× 600 0.03 0.01 3.52 0.43 0.41 4.4
800× 900 0.02 0.01 3.5 0.43 0.41 4.37
800× 1200 0.02 0.01 3.47 0.42 0.46 4.38
800× 1500 0.03 0.01 3.46 0.46 0.39 4.35
1500× 600 0.02 0.01 3.24 0.45 0.45 4.17
1500× 900 0.03 0.01 3.29 0.46 0.44 4.23
1500× 1200 0.03 0.01 3.34 0.47 0.44 4.29
1500× 1500 0.02 0.02 3.29 0.46 0.44 4.23
2000× 600 0.02 0.01 3.21 0.43 0.4 4.07
2000× 900 0.03 0.01 3.28 0.45 0.44 4.21
2000× 1200 0.03 0.01 3.29 0.45 0.44 4.22
2000× 1500 0.02 0.02 3.29 0.44 0.44 4.21

Table B.1: Performance measurements (in seconds) of the ScalAR demonstrator executing the
query “Rembrandt van Rijn” and “Chiaroscuro”

159

160 APPENDIX B. PERFORMANCE STATISTICS

screen size #m
ed

ia

#P
S

#H
FO

#c
on

st
ra

in
ts

#t
ri

ed
/#

to
ta

l

time
600× 600 17 30 30 3950 10/36 7.0
600× 900 17 30 30 3950 6/36 5.35
600× 1200 17 30 30 3950 6/36 5.36
600× 1500 17 30 30 3950 6/36 5.45
800× 600 17 30 30 3950 2/36 4.4
800× 900 17 30 30 3950 2/36 4.37
800× 1200 17 30 30 3950 2/36 4.38
800× 1500 17 30 30 3950 2/36 4.35
1500× 600 17 30 32 4228 1/36 4.17
1500× 900 17 30 32 4228 1/36 4.23
1500× 1200 17 30 32 4228 1/36 4.29
1500× 1500 17 30 32 4228 1/36 4.23
2000× 600 17 30 32 4228 1/36 4.07
2000× 900 17 30 32 4228 1/36 4.21
2000× 1200 17 30 32 4228 1/36 4.22
2000× 1500 17 30 32 4228 1/36 4.21

Table B.2: Statistics of the ScalAR demonstrator executing the query “Rembrandt van Rijn” and
“Chiaroscuro”

161

query ag
gr

eg
at

io
n

no
rm

al
iz

at
io

n

fo
rm

at
tin

g

se
ri

al
iz

at
io

n

st
an

da
rd

iz
at

io
n

total
Rembrandt + Chiaroscuro 0.02 0.01 3.47 0.4 0.38 4.28
Rembrandt + Bible 0.03 0.01 3.04 0.36 0.34 3.78
Rembrandt + Christ 0.03 0.0 1.0 0.17 0.18 1.38
Rembrandt + Brush technique 0.02 0.01 2.33 0.37 0.35 3.08
Rembrandt + Light source 0.02 0.01 1.25 0.2 0.18 1.66
Rembrandt + Rembrandt’s circle 0.03 0.0 0.87 0.16 0.16 1.22
Rembrandt + Fantasy costume 0.02 0.01 1.23 0.21 0.2 1.67
Rembrandt + Age 0.03 0.0 1.98 0.32 0.31 2.64
Rembrandt + Fire 0.02 0.01 1.24 0.21 0.2 1.68
Rubens + Chiaroscuro 0.02 0.01 0.99 0.18 0.17 1.37
Rubens + Bible 0.02 0.01 0.99 0.17 0.16 1.35
Rubens + Christ 0.02 0.01 0.99 0.19 0.15 1.36
Rubens + Brush technique 0.03 0.0 0.87 0.17 0.15 1.22
Rubens + Age 0.03 0.0 0.88 0.16 0.16 1.23
Eeckhout + Chiaroscuro 0.03 0.0 0.99 0.18 0.17 1.37
Eeckhout + Bible 0.02 0.01 1.0 0.18 0.17 1.38
Eeckhout + Christ 0.02 0.01 1.0 0.18 0.18 1.39
Eeckhout + Rembrandt’s circle 0.02 0.0 0.89 0.16 0.15 1.22
Dou + Chiaroscuro 0.02 0.01 0.99 0.18 0.17 1.37
Dou + Brush technique 0.02 0.01 0.87 0.16 0.16 1.22
Dou + Light source 0.02 0.0 0.88 0.16 0.16 1.22
Dou + Rembrandt’s circle 0.02 0.01 1.49 0.28 0.27 2.07
Dou + Age 0.03 0.0 0.87 0.16 0.16 1.22
Dou + Genre painting 0.03 0.0 1.0 0.18 0.17 1.38
Brugghen + Chiaroscuro 0.02 0.01 1.0 0.18 0.17 1.38
Brugghen + Christ 0.02 0.01 0.99 0.18 0.17 1.37
Brugghen + Light source 0.02 0.01 0.87 0.15 0.16 1.21
Vermeyen + Chiaroscuro 0.02 0.01 1.0 0.18 0.17 1.38
Vermeyen + Christ 0.02 0.01 1.0 0.18 0.17 1.38
Vermeyen + Light source 0.02 0.01 0.88 0.16 0.15 1.22
Venne + Bible 0.03 0.01 0.99 0.18 0.17 1.38
Vianen + Bible 0.03 0.01 0.99 0.18 0.17 1.38
Hals + Brush technique 0.03 0.0 1.7 0.28 0.27 2.28
Hals + Genre painting 0.02 0.01 1.0 0.17 0.18 1.38
Flinck + Bible 0.02 0.01 0.99 0.18 0.17 1.37
Flinck + Brush technique 0.02 0.01 0.87 0.17 0.15 1.22
Flinck + Rembrandt’s circle 0.03 0.0 1.65 0.27 0.28 2.23
Flinck + Fantasy costume 0.02 0.01 1.26 0.21 0.2 1.7
Flinck + Age 0.02 0.01 0.87 0.16 0.16 1.22
Metsu + Age 0.02 0.01 1.24 0.21 0.2 1.68
Metsu + Genre painting 0.02 0.01 0.99 0.17 0.18 1.37
Steen + Genre painting 0.02 0.01 1.38 0.22 0.19 1.82
Vermeer + Brush technique 0.03 0.0 0.88 0.16 0.15 1.22
Vermeer + Genre painting 0.02 0.01 2.13 0.34 0.34 2.84

Table B.3: Performance measurements (in seconds) of the ScalAR demonstrator executing vari-
able queries (screen size is 1024× 768)

162 APPENDIX B. PERFORMANCE STATISTICS

query #m
ed

ia

#P
S

#H
FO

#c
on

st
ra

in
ts

#t
ri

ed
/#

to
ta

l

time
Rembrandt + Chiaroscuro 16 26 28 3686 2/18 4.28
Rembrandt + Bible 14 23 25 3293 2/18 3.78
Rembrandt + Christ 6 11 13 1719 1/27 1.38
Rembrandt + Brush technique 13 22 26 3442 1/18 3.08
Rembrandt + Light source 7 13 15 1985 1/27 1.66
Rembrandt + Rembrandt’s circle 5 10 12 1590 1/27 1.22
Rembrandt + Fantasy costume 7 13 15 1985 1/27 1.67
Rembrandt + Age 11 19 23 3049 1/18 2.64
Rembrandt + Fire 7 13 15 1985 1/27 1.68
Rubens + Chiaroscuro 6 11 13 1719 1/27 1.37
Rubens + Bible 6 11 13 1719 1/27 1.35
Rubens + Christ 6 11 13 1719 1/27 1.36
Rubens + Brush technique 5 10 12 1590 1/27 1.22
Rubens + Age 5 10 12 1590 1/27 1.23
Eeckhout + Chiaroscuro 6 11 13 1719 1/27 1.37
Eeckhout + Bible 6 11 13 1719 1/27 1.38
Eeckhout + Christ 6 11 13 1719 1/27 1.39
Eeckhout + Rembrandt’s circle 5 10 12 1590 1/27 1.22
Dou + Chiaroscuro 6 11 13 1719 1/27 1.37
Dou + Brush technique 5 10 12 1590 1/27 1.22
Dou + Light source 5 10 12 1590 1/27 1.22
Dou + Rembrandt’s circle 9 16 20 2654 1/18 2.07
Dou + Age 5 10 12 1590 1/27 1.22
Dou + Genre painting 6 11 13 1719 1/27 1.38
Brugghen + Chiaroscuro 6 11 13 1719 1/27 1.38
Brugghen + Christ 6 11 13 1719 1/27 1.37
Brugghen + Light source 5 10 12 1590 1/27 1.21
Vermeyen + Chiaroscuro 6 11 13 1719 1/27 1.38
Vermeyen + Christ 6 11 13 1719 1/27 1.38
Vermeyen + Light source 5 10 12 1590 1/27 1.22
Venne + Bible 6 11 13 1719 1/27 1.38
Vianen + Bible 6 11 13 1719 1/27 1.38
Hals + Brush technique 9 16 20 2654 1/18 2.28
Hals + Genre painting 6 11 13 1719 1/27 1.38
Flinck + Bible 6 11 13 1719 1/27 1.37
Flinck + Brush technique 5 10 12 1590 1/27 1.22
Flinck + Rembrandt’s circle 9 16 20 2654 1/18 2.23
Flinck + Fantasy costume 7 13 15 1985 1/27 1.7
Flinck + Age 5 10 12 1590 1/27 1.22
Metsu + Age 7 13 15 1985 1/27 1.68
Metsu + Genre painting 6 11 13 1719 1/27 1.37
Steen + Genre painting 8 14 16 2114 1/27 1.82
Vermeer + Brush technique 5 10 12 1590 1/27 1.22
Vermeer + Genre painting 12 20 24 3178 1/18 2.84

Table B.4: Statistics of the ScalAR demonstrator executing variable queries (screen size is
1024× 768)

163

screen size ag
gr

eg
at

io
n

no
rm

al
iz

at
io

n

fo
rm

at
tin

g

se
ri

al
iz

at
io

n

st
an

da
rd

iz
at

io
n

total
500× 600 0.03 0.01 116.14 0.71 0.69 117.58
500× 900 0.04 0.01 224.09 0.78 0.65 225.57
500× 1200 0.03 0.01 273.5 0.79 0.69 275.02
500× 1500 0.03 0.01 276.81 0.72 0.7 278.27
600× 600 0.03 0.01 81.01 0.8 0.72 82.57
600× 900 0.03 0.01 124.36 0.8 0.71 125.91
600× 1200 0.03 0.01 164.95 0.73 0.7 166.42
600× 1500 0.03 0.01 166.01 0.73 0.73 167.51
800× 600 0.03 0.01 32.3 0.81 0.7 33.85
800× 900 0.03 0.01 69.56 0.8 0.71 71.11
800× 1200 0.03 0.02 69.84 0.81 0.7 71.4
800× 1500 0.03 0.01 70.51 0.82 0.7 72.07
1200× 600 0.03 0.01 7.38 0.76 0.81 8.99
1200× 900 0.02 0.01 7.26 0.75 0.82 8.86
1200× 1200 0.03 0.01 7.3 0.83 0.74 8.91
1200× 1500 0.03 0.01 7.25 0.85 0.73 8.87
2000× 600 0.03 0.01 7.27 0.85 0.74 8.9
2000× 900 0.03 0.01 7.0 0.83 0.75 8.62
2000× 1200 0.02 0.02 7.26 0.83 0.74 8.87
2000× 1500 0.03 0.01 7.35 0.85 0.75 8.99

Table B.5: Performance measurements (in seconds) of the SEMINF demonstrator executing the
query “Abraham Lincoln”

164 APPENDIX B. PERFORMANCE STATISTICS

screen size #m
ed

ia

#P
S

#H
FO

#c
on

st
ra

in
ts

#t
ri

ed
/#

to
ta

l

time
500× 600 22 37 44 5834 3322/5832 117.58
500× 900 22 37 44 5834 3160/5832 225.57
500× 1200 22 37 44 5834 3160/5832 275.02
500× 1500 22 37 44 5834 3160/5832 278.27
600× 600 22 37 44 5834 812/2916 82.57
600× 900 22 37 44 5834 488/2916 125.91
600× 1200 22 37 44 5834 488/2916 166.42
600× 1500 22 37 44 5834 488/2916 167.51
800× 600 22 37 44 5834 164/2916 33.85
800× 900 22 37 44 5834 164/2916 71.11
800× 1200 22 37 44 5834 164/2916 71.4
800× 1500 22 37 44 5834 164/2916 72.07
1200× 600 22 37 46 6112 1/2916 8.99
1200× 900 22 37 46 6112 1/2916 8.86
1200× 1200 22 37 46 6112 1/2916 8.91
1200× 1500 22 37 46 6112 1/2916 8.87
2000× 600 22 37 46 6112 1/2916 8.9
2000× 900 22 37 46 6112 1/2916 8.62
2000× 1200 22 37 46 6112 1/2916 8.87
2000× 1500 22 37 46 6112 1/2916 8.99

Table B.6: Statistics of the SEMINF demonstrator executing the query “Abraham Lincoln”

query #m
ed

ia

#P
S

#H
FO

#c
on

st
ra

in
ts

#t
ri

ed
/#

to
ta

l

time
Abraham Lincoln 22 37 46 6112 109/2916 38.69
Monuments 20 31 38 5026 31/324 22.7
Presidents 13 19 27 3581 2/36 3.74
Sculpture 16 25 34 4516 26/324 22.91
statue 20 31 38 5026 31/324 22.07
Washington 19 28 34 4484 3/36 5.55
Horydczak 19 28 34 4484 3/36 5.21
Gottscho 11 16 22 2912 5/54 3.88

Table B.7: Statistics of the SEMINF demonstrator executing variable queries (screen size is
1024× 768)

165

query ag
gr

eg
at

io
n

no
rm

al
iz

at
io

n

fo
rm

at
tin

g

se
ri

al
iz

at
io

n

st
an

da
rd

iz
at

io
n

total
Abraham Lincoln 0.03 0.01 36.98 0.85 0.82 38.69
Monuments 0.07 0.01 21.33 0.66 0.63 22.7
Presidents 0.06 0.01 2.9 0.39 0.38 3.74
Sculpture 0.08 0.0 21.84 0.5 0.49 22.91
statue 0.07 0.01 20.79 0.64 0.56 22.07
Washington 0.07 0.01 4.43 0.5 0.54 5.55
Horydczak 0.11 0.01 4.1 0.51 0.48 5.21
Gottscho 0.01 0.0 3.35 0.25 0.27 3.88

Table B.8: Performance measurements (in seconds) of the SEMINF demonstrator executing
variable queries (screen size is 1024× 768)

screen size ag
gr

eg
at

io
n

no
rm

al
iz

at
io

n

fo
rm

at
tin

g

se
ri

al
iz

at
io

n

st
an

da
rd

iz
at

io
n

total
500× 900 0.08 0.01 152.6 0.59 0.59 153.87
500× 1200 0.08 0.02 10.7 0.63 0.61 12.04
500× 1500 0.08 0.02 10.75 0.63 0.62 12.1
600× 900 0.08 0.02 55.79 0.64 0.62 57.15
600× 1200 0.08 0.02 102.23 0.66 0.65 103.64
600× 1500 0.08 0.02 102.59 0.63 0.62 103.94
800× 600 0.08 0.01 12.73 0.66 0.67 14.15
800× 900 0.08 0.02 11.05 0.69 0.68 12.52
800× 1200 0.07 0.02 9.03 0.79 0.67 10.58
800× 1500 0.08 0.02 8.92 0.78 0.7 10.5
1200× 600 0.08 0.01 16.57 0.67 0.65 17.98
1200× 900 0.08 0.02 7.47 0.78 0.69 9.04
1200× 1200 0.08 0.02 7.65 0.83 0.71 9.29
1200× 1500 0.08 0.02 7.89 0.84 0.66 9.49
1500× 600 0.08 0.02 7.02 0.7 0.75 8.57
1500× 900 0.08 0.02 6.8 0.79 0.69 8.38
1500× 1200 0.08 0.02 6.92 0.7 0.75 8.47
1500× 1500 0.08 0.02 6.99 0.71 0.73 8.53

Table B.9: Performance measurements (in seconds) of the DISC demonstrator executing the
query “Rembrandt van Rijn”

166 APPENDIX B. PERFORMANCE STATISTICS

screen size #m
ed

ia

#P
S

#H
FO

#c
on

st
ra

in
ts

#t
ri

ed
/#

to
ta

l

time
500× 900 19 51 36 4762 2320/2592 153.87
500× 1200 20 51 38 5028 592/2592 12.04
500× 1500 20 51 38 5028 592/2592 12.1
600× 900 20 51 38 5028 592/2592 57.15
600× 1200 20 51 38 5028 592/2592 103.64
600× 1500 20 51 38 5028 592/2592 103.94
800× 600 20 51 40 5304 297/2592 14.15
800× 900 20 51 40 5304 153/2592 12.52
800× 1200 20 51 42 5580 151/2592 10.58
800× 1500 20 51 42 5580 151/2592 10.5
1200× 600 20 51 40 5304 9/2592 17.98
1200× 900 20 51 42 5580 3/2592 9.04
1200× 1200 20 51 42 5580 3/2592 9.29
1200× 1500 20 51 42 5580 3/2592 9.49
1500× 600 20 51 42 5580 1/2592 8.57
1500× 900 20 51 42 5580 1/2592 8.38
1500× 1200 20 51 42 5580 1/2592 8.47
1500× 1500 20 51 42 5580 1/2592 8.53

Table B.10: Statistics of the DISC demonstrator executing the query “Rembrandt van Rijn”

query ag
gr

eg
at

io
n

no
rm

al
iz

at
io

n

fo
rm

at
tin

g

se
ri

al
iz

at
io

n

st
an

da
rd

iz
at

io
n

total
Rembrandt 0.07 0.02 12.08 0.65 0.65 13.47
Gogh 0.04 0.01 10.87 0.59 0.51 12.02
Steen 0.05 0.01 9.97 0.67 0.65 11.35
Bol 0.04 0.02 6.74 0.67 0.67 8.14
Terborch, Gerard 0.05 0.01 14.03 0.6 0.58 15.27
Mostaert 0.03 0.01 10.12 0.46 0.45 11.07
Goltzius 0.04 0.01 8.57 0.62 0.55 9.79

Table B.11: Performance measurements (in seconds) of the DISC demonstrator executing vari-
able queries (screen size is 1024× 768)

167

screen size #m
ed

ia

#P
S

#H
FO

#c
on

st
ra

in
ts

#t
ri

ed
/#

to
ta

l

time
Rembrandt 20 51 40 5304 9/2592 13.47
Gogh 17 35 35 4645 9/648 12.02
Steen 20 42 40 5304 9/864 11.35
Bol 20 42 42 5580 3/864 8.14
Terborch, Gerard 18 38 36 4772 9/288 15.27
Mostaert 15 31 31 4113 9/216 11.07
Goltzius 18 38 38 5048 5/288 9.79

Table B.12: Statistics of the DISC demonstrator executing variable queries (screen size is 1024×
768)

168 APPENDIX B. PERFORMANCE STATISTICS

Summary

A Document Engineering Model and Processing Frame-
work for Multimedia Documents

Multimedia documents are different from text-based documents in the sense that they do not
have a predefined dominant media type but are composed of multiple media items using different
media types, such as, image, text, audio and video. The author of a multimedia document uses
media items that are, either specifically created, or (re)used from existing resources, to represent
the message she intends to convey. Furthermore, a multimedia document has, besides two spatial
dimensions, a temporal dimension. Consequently, the author of a multimedia document should,
in addition to the spatial layout, synchronize media items in a meaningful way.

Authoring multimedia documents is in multiple ways different from authoring a text-based
electronic document. First, modern text processors allow an author to abstract from typesetting
details, such as hyphenation, kerning and leading. The word processor automatically formats the
text in such a way that it fits within the designated area, such as a page or screen. In contrast,
the author of a multimedia document carefully designs a multimedia document so that it exactly
fits the screen size the document is designed for. One presentation may have been created for
a screen with a width of 1024 pixels and a height of 768 pixels. A second presentation, which
conveys an identical message, but on a screen with a width of 640 pixels and a height of 800
pixels will typically require manual authoring.

Secondly, modern text processors often have the ability to include predefined styles (e.g.
corporate identity), which allows an author to abstract from the styling of the document. Con-
sequently, an author does not require design expertise to ensure a consistently formatted and
aesthetically pleasing document. In contrast, modern authoring tools for multimedia documents
require an author to make both authoring and design decisions.

The reason that authoring and design are intertwined in the production of multimedia doc-
uments is that the spatial layout and temporal synchronization between media items is semanti-
cally significant. Unlike text, where a sentence or word may be split to continue on the next line
or page, breaking the spatio-temporal relations between media items in a multimedia document
typically alters the message conveyed by the document. When the presentation does not fit the
screen, the author carefully redesigns the presentation in order to maintain these relationships.

Although a multimedia document can be adapted to a particular context, and multiple multi-
media documents can be consistently styled, this typically requires significant human investment.
The costs involved in authoring and designing multimedia documents are therefore relatively
high compared to textual documents. As a result, the production of multimedia documents is

169

only viable in specific cases, which is unfortunate because multimedia documents are typically
effective to convey a particular message.

To address this discrepancy we derived requirements for an extended document engineering
model. These include requirements derived from the traditional document engineering model.
However, the traditional model assumes generally applicable overflow strategies, which is not
the case for multimedia documents. Therefore, the formatting of multimedia documents may,
in contrast to text-based documents, fail. An extended document engineering model should thus
detect constraint violations and propose alternative formatting when necessary. We defined such
a extended model, expressing explicit knowledge on the properties of the delivery context and
form constructs that are relevant for detecting constraint violations. As a result, the knowledge
requirements in an extended document engineering model are significantly larger compared to
traditional document engineering. To reduce the associated costs, an extended document engi-
neering model should support reuse and preserve existing knowledge where possible.

To evaluate the model, we have implemented a multimedia document engineering formatter
using a Constraint Logic Programming approach. The formatter is embedded in a client-server
framework so that is can be used in a web environment. Based on this framework we demon-
strate in three distinctive use cases that the document engineering paradigm may be successfully
applied to a number of multimedia documents that are representative for each use case. Success-
ful in this context means that: firstly, a single set of style rules may be used to transform multiple
structured documents. Secondly, the intended output is automatically adapted to the delivery
context without changing the function that is conveyed.

Compared to the traditional model, our model extends the notions of function, form and
style to meet the specific requirements of multimedia documents. We include an explicit and
parametrized delivery context that represents the constraints of the environment the document is
played in, and the specification of alternative style rules that are automatically invoked by the
formatter if the resulting document form does not comply to the hard constraints imposed by the
delivery context.

170

Bibliography

[1] Adobe Systems Incorporated. Portable Document Format (PDF). See
http://www.adobe.com/products/acrobat/adobepdf.html.

[2] Adobe Systems Incorporated. PostScript. See
http://www.adobe.com/products/postscript/main.html.

[3] Aidministrator Nederland B.V. SeRQL user manual, April 4, 2003.

[4] Philippe Aigrain. Content-based representation and retrieval of visual media: A
state-of-the-art review. Multimedia Tools and Applications, 3:179–202, 1996.

[5] James F. Allen. Maintaining Knowledge about Temporal Intervals. Communications of
the ACM, 26(11):832–844, November 1983.

[6] Alia Amin, Lynda Hardman, and Jacco van Ossenbruggen. Semantic Design. Poster
presented at MultimediaN Day, June 2006, 2006.

[7] E. André, W. Finkler, W. Graf, T. Rist, A. Schauder, and W.Wahlster. WIP: The
Automatic Synthesis of Multimodal Presentations. In Mark T. Maybury, editor,
Intelligent Multimedia Interfaces, pages 75–93. AAAI Press, 1993.

[8] Elisabeth André, Jochen Müller, and Thomas Rist. WIP/PPP: Knowledge-Based
Methods for Fully Automated Multimedia Authoring. London, UK, 1996.

[9] Apple. Apple QuickTime Player. http://www.apple.com/quicktime/.

[10] K.R. Apt. Principles of Constraint Programming. Cambridge University Press, 2003.

[11] K.R. Apt and E. Monfroy. “Automatic generation of constraint propagation algorithms
for small finite domains”. In Proc. of the 5th International Conference on Principles and
Practice of Constraint Programming (CP’99), pages 58–72. Springer-Verlag, 1999.
Lecture Notes in Computer Science 1713.

[12] K.R. Apt and M.G. Wallace. Constraint Logic Programming using ECLiPSe. Cambridge
University Press, 2006.

[13] Richard Arndt, Raphaël Troncy, Steffen Staab, and Lynda Hardman. Adding Formal
Semantics to MPEG7: Designing a Well-Founded Multimedia Ontology for the Web.
Technical Report KU-N0407, KU and CWI, January 2007.

171

[14] Richard Arndt, Raphaël Troncy, Steffen Staab, Lynda Hardman, and Miroslav Vacura.
COMM: Designing a Well-Founded Multimedia Ontology for the Web. In The Semantic
Web - ISWC/ASWC 2007, volume 4825 of Lecture Notes in Computer Science, pages
30–43, Busan, Korea, November 11-15 2007.

[15] Ken Arnold, James Gosling, and David Holmes. The Java Programming Language.
Addison-Wesley Publishing Company, 3rd edition, 2000.

[16] G.J. Badros and A. Borning. Cassowary: A Constraint Solving Toolkit, 1999.

[17] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice. SEI
Series in Software Engineering. Addison Wesley, 1998.

[18] John Bateman, Jörg Kleinz, Thomas Kamps, and Klaus Reichenberger. Towards
Constructive Text, Diagram, and Layout Generation for Information Presentation.
Computational Linguistics, 27(3):409–449, September 2001.

[19] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform Resource Identifiers (URI):
Generic Syntax, August 1998. RFC 2396.

[20] Tim Berners-Lee. Web Architecture. Slide 10 of invited talk at Semantic Web -
XML2000, 2000. See http://www.w3.org/2000/Talks/1206-xml2k-tbl/slide10-0.html.

[21] Tim Berners-Lee. Linked data. http://www.w3.org/DesignIssues/LinkedData.html, 2006.

[22] Tim Berners-Lee and Mark Fischetti. Weaving the Web : The Original Design and
Ultimate Destiny of the World Wide Web by its Inventor. Harper, San Francisco, Oktober
1999.

[23] Niels Ole Bernsen. Defining a Taxonomy of Output Modalities from an HCI
Perspective. Computer Standards and Interfaces, 18:537–553, 1997.

[24] Frédéric Bes and Cécile Roisin. A Presentation Language for Controlling the Formatting
Process in Multimedia Presentations. In Proceedings of Document Engineering 2002,
2002.

[25] C. Bizer, R. Lee, and E. Pietriga. Fresnel — A Browser-Independent Presentation
Vocabulary for RDF. In Proceedings of the Second International Workshop on
Interaction Design and the Semantic Web, Galway, Ireland, November 6–10, 2005.

[26] Stefano Bocconi. Vox Populi: generating video documentaries from semantically
annotated media repositories. PhD thesis, Technische Universiteit Eindhoven,
Eindhoven, The Netherlands, November 30, 2006.

[27] M. Bordegoni, G. Faconti, M.T. Maybury, T. Rist, S. Ruggieri, P. Trahanias, and
M. Wilson. A Standard Reference Model for Intelligent Multimedia Presentation
Systems. Computer Standards & Interfaces, 18(6-7):477–496, December 1997.

[28] Bert Bos, Håkon Wium Lie, Chris Lilley, and Ian Jacobs. Cascading Style Sheets, level 2
CSS2 Specification. W3C Recommendation, May 12, 1998.

172

[29] Tim Bray, Jean Paoli, and C. M. Sperberg-McQueen. Extensible Markup Language
(XML) 1.0 Specification. W3C Recommendation, February 10, 1998.

[30] Pearl Brereton, David Budgen, and Geoff Hamilton. Hypertext: The Next Maintenance
Mountain. Computer, pages 49–55, December 1998.

[31] Jeen Broekstra, Arjohn Kampman, and Frank van Harmelen. Sesame: A Generic
Architecture for Storing and Querying RDF and RDF Schema. In Ian Horrocks and Jim
Hendler, editors, The Semantic Web - ISWC 2002, number 2342 in Lecture Notes in
Computer Science, pages 54–68, Berlin Heidelberg, 2002. Springer.

[32] John F. Buford. Evaluating HyTime: an examination and implementation experience. In
Proceedings of the Seventh ACM Conference on Hypertext (Hypertext’96), pages 105 –
115, March 1996, Washington D.C., 1996. ACM, ACM Press.

[33] Dick C.A. Bulterman, Jack Jansen, Sjoerd Mullender, and Kees Blom. The
AMBULANT Open SMIL Player. http://www.cwi.nl/projects/Ambulant/.

[34] S. Chatman. Coming to Terms -The Rhetoric of Narrative in Fiction and Film. Cornell
University Press, Ithaca, New York, 1990.

[35] James Clark. XSL Transformations (XSLT) Version 1.0. W3C Recommendation, 16
November 1999.

[36] James Clark and Steve DeRose. XML Path Language (XPath) Version 1.0. W3C
Recommendation, 16 November 1999.

[37] A. G. Cohn and S. M. Hazarika. Qualitative spatial representation and reasoning: an
overview. Fundamenta Informaticae, 46(1-2):1–29, 2001.

[38] Open Archives Initiative Community. OAI Protocol for Metadata Harvesting 2.0., 2002.

[39] Open Archives Initiative Community. OAI Object Reuse and Exchange, 2008.

[40] Mozilla Corporation. Mozilla, 2005.

[41] Marc Davis. Media Streams: An Iconic Visual Language for Video Representation. In
Ronald M. Baecker, Jonathan Grudin, William A. S. Buxton, and Saul Greenberg,
editors, Readings in Human-Computer Interaction: Toward the Year 2000, pages
854–866. Morgan Kaufmann Publishers, Inc., 1995.

[42] Paulo Jorge Lopes de Moura. Logtalk 2.6 Documentation. Technical report,
Departament of Mathematics and Informatics. University of Beira Interior., July 2000.

[43] Steve DeRose, Eve Maler, and David Orchard. XML Linking Language (XLink). W3C
Proposed Recommendations are available at http://www.w3.org/TR, 20 December 2000.

[44] Steve DeRose, Eve Maler, and Jr. Ron Daniel. XML Pointer Language (XPointer)
Version 1.0. W3C Candidate Recommendations are available at http://www.w3.org/TR,
8 January 2001. Superceded by http://www.w3.org/TR/xptr-framework/ etc.

173

[45] H.L. Dreyfus and S.E. Dreyfus. Making a Mind Versus Modeling the Brain: Artificial
Intelligence Back at a Branch-Point. Artificial Intelligence, Vol. 117, No. 1 (Winter
1988), 1988.

[46] Dublin Core Community. Dublin Core Element Set, Version 1.1, 2003.

[47] D. J. Duke, I. Herman, T. Rist, and M. Wilson. Relating the primitive hierarchy of the
PREMO standard to the standard reference model for intelligent multimedia presentation
systems. Computer Standards & Interfaces, 18(6-7):525–535, December 1997.

[48] Umberto Eco. A Theory of Semiotics. Palgrave Macmillan, 1977.

[49] S.M. Eisenstein. Film Form: Essays in Film Theory. Harcourt Brace Jovanovich
Publishers, 1949.

[50] Anton Eliëns. Principles of Object-Oriented Software Development. Addison-Wesley,
2nd edition, 2000.

[51] Jérôme Euzenat, Nabil Layaı̈da, and Victor Dias. A semantic framework for multimedia
document adaptation. In In Proceedings of International Joint Conference on Artificial
Intelligence (IJCAI’2003), Acapulco, Mexico, August 9-16, 2003.

[52] Kateryna Falkovych and Frank Nack. Context Aware Guidance for Multimedia
Authoring: Harmonizing Domain and Discourse Knowledge. Multimedia Systems
Journal, Special issue on Multimedia System Technologies for Educational Tools, S.
Acton, F. Kishino, R. Nakatsu, M. Rauterberg & J. Tang eds., 11(3):226–235, 2006.

[53] Kateryna Falkovych and Frank Nack. Context aware guidance for multimedia authoring:
harmonizing domain and discourse knowledge. Multimedia Systems, 11(3):226–235,
2006.

[54] Steven K. Feiner and Kathleen R. McKeown. Automating the Generation of Coordinated
Multimedia Explanations. In Mark T. Maybury, editor, Intelligent Multimedia Interfaces,
pages 89–97. AAAI Press, 1993.

[55] Christiane Fellbaum, editor. WordNet: An Electronic Lexical Database. Language,
Speech, and Communication Series. MIT Press, 1998.

[56] Jon Ferraiolo. Scalable Vector Graphics (SVG) 1.0 Specification. W3C
Recommendation, 4 September 2001.

[57] Roy Thomas Fielding. Architectural Styles and the Design of Network-based Software
Architectures. PhD thesis, UNIVERSITY OF CALIFORNIA, Irvine, 2000.

[58] F. Frasincar, A. Telea, and G.J. Houben. Adapting graph visualization techniques for the
visualization of rdf data. In Visualizing the Sementic Web [63], pages 64–76.

[59] N. Freed and N. Borenstein. Multipurpose Internet Mail Extensions (MIME) Part Two:
Media Types. RFC 2046, November 1996. Obsoletes: 1521, 1522, 1590 Category:
Standards Track.

174

[60] David R. Fuchs. Device-independent (DVI). See
http://www.ctan.org/tex-archive/systems/knuth/texware/dvitype.web.

[61] Richard K. Furuta. Important Papers in the History of Document Preparation Systems:
Basic Sources. Electronic Publishing — Origination, Dissemination and Design,
5(1):19–44, March 1992.

[62] David Garlan and Mary Shaw. An Introduction to Software Architecture. Advances in
Software Engineering and Knowledge Engineering, 1, 1993. Edited by V. Ambrolia and
G. Tortora.

[63] Vladimir Geroimenko and Chamoi Chen. Visualizing the Semantic Web — XML-based
Internet and Information Visualization. Springer-Verlag, 2003.

[64] Getty Research Institute. Art & Architecture Thesaurus (Online).
http://www.getty.edu/research/tools/vocabulary/aat/, 2000. Version 2.0.

[65] Joost Geurts, Stefano Bocconi, Jacco van Ossenbruggen, and Lynda Hardman. Towards
Ontology-driven Discourse: From Semantic Graphs to Multimedia Presentations. In
Dieter Fensel, Katia Sycara, and John Mylopoulos, editors, Second International
Semantic Web Conference (ISWC2003), pages 597–612, Sanibel Island, Florida, USA,
October 20-23, 2003. Springer-Verlag.

[66] Joost Geurts, Jacco van Ossenbruggen, and Lynda Hardman. Application-Specific
Constraints for Multimedia Presentation Generation. In Proceedings of the International
Conference on Multimedia Modeling 2001 (MMM01), pages 247–266, CWI,
Amsterdam, The Netherlands, November 5-7, 2001.

[67] Joost Geurts, Jacco van Ossenbruggen, and Lynda Hardman. Requirements for practical
multimedia annotation. In Workshop on Multimedia and the Semantic Web, pages 4–11,
Heraklion, Crete, May 2005. part of 2nd European Semantic Web Conference.

[68] Joost Geurts, Jacco van Ossenbruggen, Lynda Hardman, and Marc Davis. Video on the
Semantic Web - Experiences with Media Streams. Technical Report INS-E0404, CWI,
2004.

[69] Charles F. Goldfarb. The SGML Handbook. Oxford University Press, 1990. Edited and
with a foreword by Yuri Rubinsky.

[70] J. Greimas. Structural Semantics: An Attempt at a Method. Lincoln: University of
Nebraska Press, 1983.

[71] William I. Grosky. Managing multimedia information in database systems.
Communications of the ACM, 40(12):72–80, December 1997.

[72] Ubiquitous Web Applications Working Group. More information on
http://www.w3.org/2007/uwa/.

[73] Kenneth Haase. Context for semantic metadata. In Proceedings of the 12th ACM
International Conference on Multimedia, pages 204–211, 2004.

175

[74] F. Halasz and M. Schwartz. The Dexter Hypertext Reference Model. Communications of
the ACM, 37(2):30–39, February 1994. Edited by K. Grønbæck and R. Trigg.

[75] L. Hardman, Z. Obrenovic, F.-M. Nack, B. Kerherv, and K. Piersol. Canonical Processes
Of Semantically Annotated Media Production. Multimedia systems, 14(6):327 – 340,
December 2008.

[76] Lynda Hardman. Modelling and Authoring Hypermedia Documents. PhD thesis,
University of Amsterdam, 1998. ISBN: 90-74795-93-5, also available at
http://www.cwi.nl/∼lynda/thesis/.

[77] Lynda Hardman, Marcel Worring, and Dick C.A. Bulterman. Integrating the Amsterdam
Hypermedia Model into the Standard Reference Model for Intelligent Multimedia
Presentation Sytems. Computer Standards and Interfaces, 18(6-7):497–508, 1997.

[78] Patrick Hayes. RDF Semantics. W3C Recommendation, 10 February 2004.

[79] Michiel Hildebrand, Jacco van Ossenbruggen, and Lynda Hardman. /facet: A Browser
for Heterogeneous Semantic Web Repositories. In The Semantic Web - ISWC 2006,
pages 272–285, November 2006.

[80] J. Hunter and L. Armstrong. A Comparison of Schemas for Video Metadata
Representation. In The Eighth International World Wide Web Conference, pages
353–373, Toronto, Canada, May 11-14, 1999.

[81] Jane Hunter. Adding Multimedia to the Semantic Web — Building an MPEG-7
Ontology. In International Semantic Web Working Symposium (SWWS), Stanford
University, California, USA, July 30 - August 1, 2001.

[82] David Huynh, David Karger, and Rob Miller. Exhibit: Lightweight structured data
publishing. In 16th International World Wide Web Conference, Banff, Alberta, Canada,
2007. ACM.

[83] International Organization for Standardization. Information Processing — Text and
Office Information Systems — Standard Generalized Markup Language (SGML), 1986.
International Standard ISO 8879:1986.

[84] International Organization for Standardization. Information Technology —
Hypermedia/Time-based Structuring Language (HyTime), August 1997. International
Standard ISO 10744:1997 (HyTime Second Edition).

[85] International Organization for Standardization/International Electrotechnical
Commission. Information technology — Processing languages — Document Style
Semantics and Specification Language (DSSSL), 1996. International Standard ISO/IEC
10179:1996.

[86] ISO/IEC. Information technology – Coding of moving pictures and audio, 1999.
International Standard ISO/IEC 14496:1999 (MPEG-4).

[87] ISO/IEC. MPEG-21 Overview v.5. ISO/IEC JTC1/SC29/WG11/N5231, Shanghai,
October 2002.

176

[88] ISO/IEC. Overview of the MPEG-7 Standard (version 8). ISO/IEC
JTC1/SC29/WG11/N4980, Klagenfurt, July 2002.

[89] S. Kim, H. Alani, W. Hall, P.H. Lewis, D.E. Millard, N.R. Shadbolt, and M.J. Weal.
Artequakt: Generating Tailored Biographies with Automatically Annotated Fragments
from the Web. Presented at the Semantic Authoring, Annotation and Knowledge Markup
(SAAKM) 2002 Workshop at the 15th European Conference on Artificial Intelligence
(ECAI 2002), Lyon, France.

[90] Graham Klyne, Franklin Reynolds, Chris Woodrow, Hidetaka Ohto, Johan Hjelm,
Mark H. Butler, and Luu Tran. Composite Capability/Preference Profiles (CC/PP):
Structure and Vocabularies 1.0. W3C Recommendation, January 2004, 2004.

[91] Donald E. Knuth. TeX: The Program, volume B of Computers and Typesetting.
Addison-Wesley Publishing Company, 1986.

[92] Donald E. Knuth. Digital typography. Center for the Study of Language and
Information, Stanford, CA, US, 1999.

[93] Lev Kuleshov. Kuleshov on film: Writings by Lev Kuleshov. Univercity of California
Press, 1974.

[94] Carl Lagoze and Herbert Van de Sompel. The Open Archives Initiative: Building a
low-barrier interoperability framework. JCDL2001, 2001.

[95] Leslie Lamport. LaTeX - A Document Preparation System. Addison-Wesley Publishing
Company, 1985.

[96] P. Lemmens and G.J. Houben. XML to XML through XML. In W. Fowler and
J. Hasebrook, editors, Proceedings of WebNet 2001, World Conference on the WWW and
Internet, pages 772–777, Orlando, USA, October 2001.

[97] Craig Lindley, Jim Davis, Frank Nack, and Lloyd Rutledge. The application of rhetorical
structure theory to interactive news program generation from digital archives. Technical
Report INS-R0101, CWI, January 2001.

[98] Suzanne Little, Joost Geurts, and Jane Hunter. Dynamic Generation of Intelligent
Multimedia Presentations through Semantic Inferencing. In 6th European Conference on
Research and Advanced Technology for Digital Libraries, pages 158–189, Pontifical
Gregorian University, Rome, Italy, September 2002. Springer.

[99] Mark Lutz. Programming Python. O’Reilly & Associates, Inc., 1st edition, 1996.

[100] Macromedia. Flash. http://www.macromedia.com/software/flash.

[101] Clara Mancini. Cinematic Hypertext. Investigating a New Paradigm. IOS Press,
Amsterdam, 2005.

[102] William C. Mann, Christian M. I. M. Matthiesen, and Sandara A. Thompson. Rhetorical
Structure Theory and Text Analysis. Technical Report ISI/RR-89-242, Information
Sciences Institute, University of Southern California, November 1989.

177

[103] Oscar Rosell Martinez. Design dependencies within the automatic generation of
hypermedia presentations. Master’s thesis, Technical University of Catalonia, June 30,
2002. Published as CWI technical report INS-R0205.

[104] L. Masinter. The ’data’ URL scheme. RFC 2397, August 1998.

[105] Mark T. Maybury. Planning multimedia explanations using communicative acts. In
Mark T. Maybury, editor, Intelligent Multimedia Interfaces, pages 59–74. AAAI Press,
1993.

[106] S. Mazzocchi and P. Ciccarese. Welkin RDF Browser, 2007.

[107] Microsoft. Microsoft Office Homepage. http://www.microsoft.com/office/.

[108] Inc. Microsoft. Internet Explorer 6, 2002.

[109] Paulo Moura. Logtalk – Design of an Object-Oriented Logic Programming Language.
PhD thesis, Universidade da Beira Interior, 2003.

[110] Frank Nack and Lynda Hardman. Denotative and Connotative Semantics in Hypermedia:
Proposal for a Semiotic-Aware Architecture. New Review of Hypermedia and
Multimedia, 7:7–37, 2001.

[111] Frank Nack and Adam T. Lindsay. Everything You Wanted to Know About MPEG-7:
Part 1. IEEE MultiMedia, pages 65–77, July - September 1999.

[112] Frank Nack and Adam T. Lindsay. Everything You Wanted to Know About MPEG-7:
Part 2. IEEE MultiMedia, pages 64–73, October - December 1999.

[113] Frank Nack and Wolfgang Putz. Designing Annotation Before It’s Needed. In
Proceedings of the 9th ACM International Conference on Multimedia, pages 251–260,
Ottawa, Ontario, Canada, September 30 - October 5, 2001.

[114] P. Naur and B. Randell, editors. The NATO Software Engineering Conferences,
Garmisch, Germany, October, 7-11, 1968. NATO Science Committee.

[115] Ulf Nilsson and Jan Maluszynski. Logic, Programming and Prolog. John Wiley and
Sons Ltd, 2nd edition, 1995.

[116] OMG (Object Management Group) . Unified Modeling Language (UML), version 1.4,
2001.

[117] OpenOffice.org. OpenOffice.org. http://www.openoffice.org/.

[118] Oratrix. GRiNS multimedia presentation authoring software.
http://www.oratrix.com/GRiNS/index.html.

[119] Roger T. Pédauque. Document: Form, Sign and Medium, As Reformulated for
Electronic Documents. Available
at:http://archivesic.ccsd.cnrs.fr/documents/archives0/00/00/05/94/index fr.html.

[120] Benoı̂t Pellan and Cyril Concolato. Authoring of scalable multimedia documents.
Multimedia Tools and Applications, 43(3):225–252, 2009.

178

[121] Eric Prud’hommeaux and Ryan Lee. W3C RDF Validation Service.
http://www.w3.org/RDF/Validator/.

[122] Dave Raggett. HTML 3.2 Reference Specification. W3C Recommendation, Januari 14,
1997.

[123] Dave Raggett, Arnaud Le Hors, and Ian Jacobs. HTML 4.0 Specification. W3C
Recommendation, April 24, 1998.

[124] RealNetworks, Inc. RealPlayer G2. See http://www.real.com/products/player/.

[125] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice
Hall, 1995.

[126] Lloyd Rutledge, Martin Alberink, Rogier Brussee, Stanislav Pokraev, William van
Dieten, and Mettina Veenstra. Finding the Story — Broader Applicability of Semantics
and Discourse for Hypermedia Generation. In Proceedings of the 14th ACM Conference
on Hypertext and Hypermedia, pages 67–76, Nottingham, UK, August 23-27, 2003.
ACM, ACM Press.

[127] Lloyd Rutledge, Brian Bailey, Jacco van Ossenbruggen, Lynda Hardman, and Joost
Geurts. Generating Presentation Constraints from Rhetorical Structure. In Proceedings
of the 11th ACM Conference on Hypertext and Hypermedia, pages 19–28, San Antonio,
Texas, USA, May 30 – June 3, 2000. ACM.

[128] Lloyd Rutledge, Jacco van Ossenbruggen, and Lynda Hardman. Making RDF
Presentable – Integrated Global and Local Semantic Web Browsing. In The Fourteenth
International World Wide Web Conference, pages 199–206, Chiba, Japan, May 2005.
IW3C2, ACM Press.

[129] Ferdinand De Saussure. Course in General Linguistics. McGraw-Hill, 1983.

[130] Guus Schreiber, Alia Amin, Lora Aroyo, Mark van Assem, Viktor de Boer, Lynda
Hardman, Michiel Hildebrand, Borys Omelayenko, Jacco van Ossenbruggen, Anna
Tordai, Jan Wielemaker, and Bob J. Wielinga. Semantic annotation and search of
cultural-heritage collections: The multimedian e-culture demonstrator. J. Web Sem.,
6(4):243–249, 2008.

[131] A.W.M. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain. Content-based image
retrieval: the end of the early years. IEEE trans., 22(12):1349–1380, 2000.

[132] Cees Snoek and Marcel Worring. Multimodal Video Indexing: A Review of the
State-of-the-art. Multimedia Tools and Applications, 25(1):5–35, 2005.

[133] The Apache Software Foundation. Cocoon web development framework. See
http://cocoon.apache.org, 1999.

[134] The Apache Software Foundation. XSP Logicsheet Guide. See
http://xml.apache.org/cocoon/userdocs/xsp/logicsheet.html, 1999.

179

[135] Raphaël Troncy. Integrating Structure and Semantics into Audio-visual Documents. In
Dieter Fensel, Katia Sycara, and John Mylopoulos, editors, Second International
Semantic Web Conference (ISWC2003), pages 566 – 581, Sanibel Island, Florida, USA,
October 20-23, 2003. Springer-Verlag Heidelberg.

[136] Raphaël Troncy, Werner Bailer, Michael Hausenblas, Philip Hofmair, and Rudolf
Schlatte. Enabling Multimedia Metadata Interoperability by Defining Formal Semantics
of MPEG-7 Profiles. In Semantic Multimedia - SAMT 2006, pages 41–55, Athens,
Greece, December 6-8, 2006.

[137] Henri van de Waal. the Iconclass iconographic classification system.

[138] Frank van Harmelen, Peter F. Patel-Schneider, and Ian Horrocks. Reference description
of the DAML+OIL (March 2001) ontology markup language, 2001.

[139] Jacco van Ossenbruggen. Processing Structured Hypermedia — A Matter of Style. PhD
thesis, Vrije Universiteit, Amsterdam, The Netherlands, April 10, 2001.

[140] Jacco van Ossenbruggen, Joost Geurts, Frank Cornelissen, Lloyd Rutledge, and Lynda
Hardman. Towards Second and Third Generation Web-Based Multimedia. In The Tenth
International World Wide Web Conference, pages 479–488, Hong Kong, May 1-5, 2001.
IW3C2, ACM Press.

[141] Jacco van Ossenbruggen, Joost Geurts, Lynda Hardman, and Lloyd Rutledge. Towards a
Formatting Vocabulary for Time-based Hypermedia. In The Twelfth International World
Wide Web Conference (WWW2003), pages 384–393, Budapest, Hungary, May 20-24,
2003. IW3C2.

[142] Jacco van Ossenbruggen, Lynda Hardman, and Lloyd Rutledge. Hypermedia and the
Semantic Web: A Research Agenda. Journal of Digital Information, 3(1), August 2002.

[143] Jacco van Ossenbruggen, Lynda Hardman, and Lloyd Rutledge. Towards Smart Style:
Combining RDF Semantics with XML Document Transformations. Technical Report
INS-E0303, CWI, October 2003.

[144] Jacco van Ossenbruggen, Frank Nack, and Lynda Hardman. That Obscure Object of
Desire: Multimedia Metadata on the Web (Part I). IEEE MultiMedia, 11(4):38–48,
October – December 2004. based on http://ftp.cwi.nl/CWIreports/INS//INS-E0308.pdf.

[145] Guido van Rossum, Jack Jansen, K. Sjoerd Mullender, and Dick C.A. Bulterman.
CMIFed: A Presentation Environment for Portable Hypermedia Documents. In The First
ACM International Conference on Multimedia, pages 183–188, August 1993.

[146] M. van Welie and G.C. van der Veer. Pattern Languages in Interaction Design: Structure
and Organization. In Proceedings of Interact ’03, pages 527–534, 2003.

[147] R. Vdovjak, F. Frasincar, G.J. Houben, and P. Barna. Engineering Semantic Web
Information Systems in Hera. Journal of Web Engineering, 2(1 and 2):3–26, 2003.

[148] Visual Resources Association. Visual Resources Association Website.

180

[149] W3C. Synchronized Multimedia Integration Language (SMIL) 1.0 Specification. W3C
Recommendation, June 15, 1998. Edited by Philipp Hoschka.

[150] W3C. Resource Description Framework (RDF) Model and Syntax Specification. W3C
Recommendations are available at http://www.w3.org/TR, February 22, 1999.

[151] W3C. XHTML 1.0: The Extensible HyperText Markup Language: A Reformulation of
HTML 4.0 in XML 1.0. W3C Recommendation, January 26, 2000.

[152] W3C. Composite Capability/Preference Profiles (CC/PP): Structure and Vocabularies.
Work in progress. W3C Working Drafts are available at http://www.w3.org/TR, 15
March 2001. Edited by Graham Klyne, Franklin Reynolds, Chris Woodrow and
Hidetaka Ohto.

[153] W3C. Device Independence Principles. Work in progress. W3C Working Drafts are
available at http://www.w3.org/TR, 18 September 2001. Edited by Roger Gimson,
co-edited by Shlomit Ritz Finkelstein, Stéphane Maes and Lalitha Suryanarayana.

[154] W3C. Extensible Stylesheet Language (XSL) Version 1.0. W3C Recommendation, 15
October 2001, 2001.

[155] W3C. Synchronized Multimedia Integration Language (SMIL 2.0) Specification. W3C
Recommendation, August 7, 2001. Edited by Aaron Cohen.

[156] W3C. RDF Vocabulary Description Language 1.0: RDF Schema. W3C
Recommendation, 10 February 2004. Edited by Dan Brickley and R.V. Guha.

[157] W3C. Web Ontology Language (OWL) - Overview. W3C Recommendation, 10
February 2004.

[158] W3C. Delivery Context: Client Interfaces (DCCI) 1.0. W3C Candidate
Recommendations are available at http://www.w3.org/TR, December 21, 2007. Edited
by Keith Waters, Rafah A. Hosn, Dave Raggett, Sailesh Sathish, Matt Womer,Max
Froumentin, Rhys Lewis and Keith Rosenblatt.

[159] L. Weitzman and Kent Wittenburg. Automatic presentation of multimedia documents
using relational grammars. In Proceedings of the second ACM international conference
on Multimedia ’94, pages 443–451, San Francisco, October 15 - 20, 1994.

[160] Jan Wielemaker, Guus Schreiber, and Bob Wielinga. Prolog-Based Infrastructure for
RDF: Scalability and Performance. In The SemanticWeb - ISWC 2003, pages 644–658,
Sanibel Island, Florida, USA, October 20-23, 2003. Springer-Verlag Heidelberg.

[161] Bob Wielinga, Jan Wielemaker, Guus Schreiber, and Mark van Assem. Methods for
Porting Resources to the Semantic Web. In 1st European Semantic Web Symposium
(ESWS 2004), Heraklion, Greece, May 10-12, 2004 (to be published).

[162] Wikipedia. Wikipedia, the free encyclopedia. website, 2005.

[163] M.A. Windhouwer, A.R. Schmidt, and M. L. Kersten. Acoi: A system for Indexing
Multimedia Objects. In International Workshop on Information Integration and
Web-based Applications & Services, Yogyakarta, Indonesia, November 1999.

181

[164] Marcel Worring, Carel van den Berg, Lynda Hardman, and Audrey Tam. System Design
for Structured Hypermedia Generation. In C. Leung, editor, Visual Information Systems,
number LNCS 1306 in Springer-Verlag Lecture Notes in Computer Science. Springer
Berlin / Heidelberg, 1997.

182

About the Author

Joost Geurts was born on October 11, 1975 in Gouda, the Netherlands. He received his Engineer-
ing degree in Computer Science from Saxion Universities of Applied Science in 1998 (Enschede
Netherlands). He continued his studies at the University of Amsterdam where in 2002 he ob-
tained his Master degree in Artificial Intelligence specializing in Logic and Language. During
his studies he held a part-time position as engineer in the Hypermedia group of the national re-
search center on computer science and mathematics (CWI) where he developed an interest for
multimedia documents on the Web. This interest was followed up in his PhD research carried out
jointly at CWI in Amsterdam and the Technical University of Eindhoven (TU/e) during which
he developed a model and software framework for applying document engineering techniques
to multimedia documents. For his research he engaged in a 6 month visit to the DSTC research
laboratory in Brisbane, Australia, and a 6 month visit to the University of California in Berkeley.
Currently he holds a position as expert engineer working on multimedia search technology at the
IMEDIA project team at INRIA Rocquencourt.

183

184

SIKS Dissertation Series

====
1998
====

1998-1 Johan van den Akker (CWI)
DEGAS - An Active, Temporal Database of Autonomous Objects

1998-2 Floris Wiesman (UM)
Information Retrieval by Graphically Browsing Meta-Information

1998-3 Ans Steuten (TUD)
A Contribution to the Linguistic Analysis of Business Conversations
within the Language/Action Perspective

1998-4 Dennis Breuker (UM)
Memory versus Search in Games

1998-5 E.W. Oskamp (RUL)
Computerondersteuning bij Straftoemeting

====
1999
====

1999-1 Mark Sloof (VU)
Physiology of Quality Change Modelling;
Automated modelling of Quality Change of Agricultural Products

1999-2 Rob Potharst (EUR)
Classification using decision trees and neural nets

1999-3 Don Beal (UM)
The Nature of Minimax Search

1999-4 Jacques Penders (UM)
The practical Art of Moving Physical Objects

1999-5 Aldo de Moor (KUB)
Empowering Communities: A Method for the Legitimate User-Driven
Specification of Network Information Systems

1999-6 Niek J.E. Wijngaards (VU)
Re-design of compositional systems

1999-7 David Spelt (UT)
Verification support for object database design

185

1999-8 Jacques H.J. Lenting (UM)
Informed Gambling: Conception and Analysis of a Multi-Agent
Mechanism for Discrete Reallocation.

====
2000
====

2000-1 Frank Niessink (VU)
Perspectives on Improving Software Maintenance

2000-2 Koen Holtman (TUE)
Prototyping of CMS Storage Management

2000-3 Carolien M.T. Metselaar (UVA)
Sociaal-organisatorische gevolgen van kennistechnologie;
een procesbenadering en actorperspectief.

2000-4 Geert de Haan (VU)
ETAG, A Formal Model of Competence Knowledge for User Interface Design

2000-5 Ruud van der Pol (UM)
Knowledge-based Query Formulation in Information Retrieval.

2000-6 Rogier van Eijk (UU)
Programming Languages for Agent Communication

2000-7 Niels Peek (UU)
Decision-theoretic Planning of Clinical Patient Management

2000-8 Veerle Coup (EUR)
Sensitivity Analyis of Decision-Theoretic Networks

2000-9 Florian Waas (CWI)
Principles of Probabilistic Query Optimization

2000-10 Niels Nes (CWI)
Image Database Management System Design Considerations,
Algorithms and Architecture

2000-11 Jonas Karlsson (CWI)
Scalable Distributed Data Structures for Database Management

====
2001
====

2001-1 Silja Renooij (UU)
Qualitative Approaches to Quantifying Probabilistic Networks

2001-2 Koen Hindriks (UU)
Agent Programming Languages: Programming with Mental Models

2001-3 Maarten van Someren (UvA)
Learning as problem solving

2001-4 Evgueni Smirnov (UM)
Conjunctive and Disjunctive Version Spaces with
Instance-Based Boundary Sets

2001-5 Jacco van Ossenbruggen (VU)
Processing Structured Hypermedia: A Matter of Style

2001-6 Martijn van Welie (VU)
Task-based User Interface Design

2001-7 Bastiaan Schonhage (VU)
Diva: Architectural Perspectives on Information Visualization

2001-8 Pascal van Eck (VU)
A Compositional Semantic Structure for Multi-Agent Systems Dynamics.

2001-9 Pieter Jan ’t Hoen (RUL)
Towards Distributed Development of Large Object-Oriented Models,
Views of Packages as Classes

2001-10 Maarten Sierhuis (UvA)
Modeling and Simulating Work Practice
BRAHMS: a multiagent modeling and simulation language
for work practice analysis and design

2001-11 Tom M. van Engers (VUA)
Knowledge Management:
The Role of Mental Models in Business Systems Design

====
2002
====

2002-01 Nico Lassing (VU)
Architecture-Level Modifiability Analysis

2002-02 Roelof van Zwol (UT)
Modelling and searching web-based document collections

2002-03 Henk Ernst Blok (UT)
Database Optimization Aspects for Information Retrieval

2002-04 Juan Roberto Castelo Valdueza (UU)
The Discrete Acyclic Digraph Markov Model in Data Mining

2002-05 Radu Serban (VU)
The Private Cyberspace Modeling Electronic Environments
inhabited by Privacy-concerned Agents

2002-06 Laurens Mommers (UL)
Applied legal epistemology;
Building a knowledge-based ontology of the legal domain

2002-07 Peter Boncz (CWI)
Monet: A Next-Generation DBMS Kernel For Query-Intensive Applications

2002-08 Jaap Gordijn (VU)
Value Based Requirements Engineering: Exploring Innovative
E-Commerce Ideas

2002-09 Willem-Jan van den Heuvel(KUB)
Integrating Modern Business Applications with Objectified Legacy Systems

2002-10 Brian Sheppard (UM)
Towards Perfect Play of Scrabble

2002-11 Wouter C.A. Wijngaards (VU)
Agent Based Modelling of Dynamics: Biological and Organisational Applications

2002-12 Albrecht Schmidt (Uva)
Processing XML in Database Systems

2002-13 Hongjing Wu (TUE)
A Reference Architecture for Adaptive Hypermedia Applications

2002-14 Wieke de Vries (UU)
Agent Interaction: Abstract Approaches to Modelling, Programming and
Verifying Multi-Agent Systems

2002-15 Rik Eshuis (UT)
Semantics and Verification of UML Activity Diagrams for Workflow Modelling

2002-16 Pieter van Langen (VU)
The Anatomy of Design: Foundations, Models and Applications

2002-17 Stefan Manegold (UVA)
Understanding, Modeling, and Improving Main-Memory Database Performance

====
2003
====

2003-01 Heiner Stuckenschmidt (VU)
Ontology-Based Information Sharing in Weakly Structured Environments

2003-02 Jan Broersen (VU)
Modal Action Logics for Reasoning About Reactive Systems

2003-03 Martijn Schuemie (TUD)
Human-Computer Interaction and Presence in Virtual Reality Exposure Therapy

2003-04 Milan Petkovic (UT)
Content-Based Video Retrieval Supported by Database Technology

2003-05 Jos Lehmann (UVA)
Causation in Artificial Intelligence and Law - A modelling approach

2003-06 Boris van Schooten (UT)
Development and specification of virtual environments

2003-07 Machiel Jansen (UvA)
Formal Explorations of Knowledge Intensive Tasks

2003-08 Yongping Ran (UM)
Repair Based Scheduling

2003-09 Rens Kortmann (UM)
The resolution of visually guided behaviour

2003-10 Andreas Lincke (UvT)
Electronic Business Negotiation: Some experimental studies on the interaction
between medium, innovation context and culture

2003-11 Simon Keizer (UT)
Reasoning under Uncertainty in Natural Language Dialogue using Bayesian Networks

2003-12 Roeland Ordelman (UT)
Dutch speech recognition in multimedia information retrieval

2003-13 Jeroen Donkers (UM)
Nosce Hostem - Searching with Opponent Models

2003-14 Stijn Hoppenbrouwers (KUN)
Freezing Language: Conceptualisation Processes across ICT-Supported Organisations

2003-15 Mathijs de Weerdt (TUD)
Plan Merging in Multi-Agent Systems

2003-16 Menzo Windhouwer (CWI)
Feature Grammar Systems - Incremental Maintenance of Indexes to
Digital Media Warehouses

2003-17 David Jansen (UT)
Extensions of Statecharts with Probability, Time, and Stochastic Timing

2003-18 Levente Kocsis (UM)
Learning Search Decisions

====
2004
====

2004-01 Virginia Dignum (UU)
A Model for Organizational Interaction: Based on Agents, Founded in Logic

2004-02 Lai Xu (UvT)
Monitoring Multi-party Contracts for E-business

2004-03 Perry Groot (VU)
A Theoretical and Empirical Analysis of Approximation in Symbolic Problem Solving

2004-04 Chris van Aart (UVA)
Organizational Principles for Multi-Agent Architectures

2004-05 Viara Popova (EUR)
Knowledge discovery and monotonicity

2004-06 Bart-Jan Hommes (TUD)
The Evaluation of Business Process Modeling Techniques

2004-07 Elise Boltjes (UM)
Voorbeeldig onderwijs; voorbeeldgestuurd onderwijs, een opstap naar
abstract denken, vooral voor meisjes

2004-08 Joop Verbeek(UM)
Politie en de Nieuwe Internationale Informatiemarkt, Grensregionale
politiële gegevensuitwisseling en digitale expertise

2004-09 Martin Caminada (VU)
For the Sake of the Argument; explorations into argument-based reasoning

2004-10 Suzanne Kabel (UVA)
Knowledge-rich indexing of learning-objects

2004-11 Michel Klein (VU)
Change Management for Distributed Ontologies

2004-12 The Duy Bui (UT)
Creating emotions and facial expressions for embodied agents

2004-13 Wojciech Jamroga (UT)
Using Multiple Models of Reality: On Agents who Know how to Play

2004-14 Paul Harrenstein (UU)
Logic in Conflict. Logical Explorations in Strategic Equilibrium

2004-15 Arno Knobbe (UU)
Multi-Relational Data Mining

2004-16 Federico Divina (VU)
Hybrid Genetic Relational Search for Inductive Learning

2004-17 Mark Winands (UM)
Informed Search in Complex Games

2004-18 Vania Bessa Machado (UvA)
Supporting the Construction of Qualitative Knowledge Models

2004-19 Thijs Westerveld (UT)
Using generative probabilistic models for multimedia retrieval

2004-20 Madelon Evers (Nyenrode)
Learning from Design: facilitating multidisciplinary design teams

====
2005
====

2005-01 Floor Verdenius (UVA)
Methodological Aspects of Designing Induction-Based Applications

2005-02 Erik van der Werf (UM))
AI techniques for the game of Go

2005-03 Franc Grootjen (RUN)
A Pragmatic Approach to the Conceptualisation of Language

2005-04 Nirvana Meratnia (UT)
Towards Database Support for Moving Object data

2005-05 Gabriel Infante-Lopez (UVA)
Two-Level Probabilistic Grammars for Natural Language Parsing

2005-06 Pieter Spronck (UM)
Adaptive Game AI

2005-07 Flavius Frasincar (TUE)
Hypermedia Presentation Generation for Semantic Web Information Systems

2005-08 Richard Vdovjak (TUE)
A Model-driven Approach for Building Distributed Ontology-based Web Applications

2005-09 Jeen Broekstra (VU)
Storage, Querying and Inferencing for Semantic Web Languages

2005-10 Anders Bouwer (UVA)
Explaining Behaviour: Using Qualitative Simulation in Interactive Learning Environments

2005-11 Elth Ogston (VU)
Agent Based Matchmaking and Clustering - A Decentralized Approach to Search

2005-12 Csaba Boer (EUR)
Distributed Simulation in Industry

2005-13 Fred Hamburg (UL)
Een Computermodel voor het Ondersteunen van Euthanasiebeslissingen

2005-14 Borys Omelayenko (VU)
Web-Service configuration on the Semantic Web; Exploring how semantics meets pragmatics

2005-15 Tibor Bosse (VU)
Analysis of the Dynamics of Cognitive Processes

2005-16 Joris Graaumans (UU)
Usability of XML Query Languages

2005-17 Boris Shishkov (TUD)
Software Specification Based on Re-usable Business Components

2005-18 Danielle Sent (UU)
Test-selection strategies for probabilistic networks

2005-19 Michel van Dartel (UM)
Situated Representation

2005-20 Cristina Coteanu (UL)
Cyber Consumer Law, State of the Art and Perspectives

2005-21 Wijnand Derks (UT)
Improving Concurrency and Recovery in Database Systems by
Exploiting Application Semantics

====
2006
====

2006-01 Samuil Angelov (TUE)
Foundations of B2B Electronic Contracting

2006-02 Cristina Chisalita (VU)
Contextual issues in the design and use of information technology in organizations

2006-03 Noor Christoph (UVA)
The role of metacognitive skills in learning to solve problems

2006-04 Marta Sabou (VU)
Building Web Service Ontologies

2006-05 Cees Pierik (UU)
Validation Techniques for Object-Oriented Proof Outlines

2006-06 Ziv Baida (VU)
Software-aided Service Bundling - Intelligent Methods & Tools
for Graphical Service Modeling

2006-07 Marko Smiljanic (UT)
XML schema matching – balancing efficiency and effectiveness by means of clustering

2006-08 Eelco Herder (UT)
Forward, Back and Home Again - Analyzing User Behavior on the Web

2006-09 Mohamed Wahdan (UM)
Automatic Formulation of the Auditor’s Opinion

2006-10 Ronny Siebes (VU)
Semantic Routing in Peer-to-Peer Systems

2006-11 Joeri van Ruth (UT)
Flattening Queries over Nested Data Types

2006-12 Bert Bongers (VU)
Interactivation - Towards an e-cology of people, our technological environment, and the arts

2006-13 Henk-Jan Lebbink (UU)
Dialogue and Decision Games for Information Exchanging Agents

2006-14 Johan Hoorn (VU)
Software Requirements: Update, Upgrade, Redesign - towards a Theory of Requirements Change

2006-15 Rainer Malik (UU)
CONAN: Text Mining in the Biomedical Domain

2006-16 Carsten Riggelsen (UU)
Approximation Methods for Efficient Learning of Bayesian Networks

2006-17 Stacey Nagata (UU)
User Assistance for Multitasking with Interruptions on a Mobile Device

2006-18 Valentin Zhizhkun (UVA)
Graph transformation for Natural Language Processing

2006-19 Birna van Riemsdijk (UU)
Cognitive Agent Programming: A Semantic Approach

2006-20 Marina Velikova (UvT)
Monotone models for prediction in data mining

2006-21 Bas van Gils (RUN)
Aptness on the Web

2006-22 Paul de Vrieze (RUN)
Fundaments of Adaptive Personalisation

2006-23 Ion Juvina (UU)
Development of Cognitive Model for Navigating on the Web

2006-24 Laura Hollink (VU)
Semantic Annotation for Retrieval of Visual Resources

2006-25 Madalina Drugan (UU)
Conditional log-likelihood MDL and Evolutionary MCMC

2006-26 Vojkan Mihajlovic (UT)
Score Region Algebra: A Flexible Framework for Structured Information Retrieval

2006-27 Stefano Bocconi (CWI)
Vox Populi: generating video documentaries from semantically annotated media repositories

2006-28 Borkur Sigurbjornsson (UVA)
Focused Information Access using XML Element Retrieval

====
2007
====

2007-01 Kees Leune (UvT)
Access Control and Service-Oriented Architectures

2007-02 Wouter Teepe (RUG)
Reconciling Information Exchange and Confidentiality: A Formal Approach

2007-03 Peter Mika (VU)
Social Networks and the Semantic Web

2007-04 Jurriaan van Diggelen (UU)
Achieving Semantic Interoperability in Multi-agent Systems: a dialogue-based approach

2007-05 Bart Schermer (UL)
Software Agents, Surveillance, and the Right to Privacy: a Legislative Framework for Agent-enabled Surveillance

2007-06 Gilad Mishne (UVA)
Applied Text Analytics for Blogs

2007-07 Natasa Jovanovic’ (UT)
To Whom It May Concern - Addressee Identification in Face-to-Face Meetings

2007-08 Mark Hoogendoorn (VU)
Modeling of Change in Multi-Agent Organizations

2007-09 David Mobach (VU)
Agent-Based Mediated Service Negotiation

2007-10 Huib Aldewereld (UU)
Autonomy vs. Conformity: an Institutional Perspective on Norms and Protocols

2007-11 Natalia Stash (TUE)
Incorporating Cognitive/Learning Styles in a General-Purpose Adaptive Hypermedia System

2007-12 Marcel van Gerven (RUN)
Bayesian Networks for Clinical Decision Support: A Rational Approach to Dynamic Decision-Making under Uncertainty

2007-13 Rutger Rienks (UT)
Meetings in Smart Environments; Implications of Progressing Technology

2007-14 Niek Bergboer (UM)
Context-Based Image Analysis

2007-15 Joyca Lacroix (UM)
NIM: a Situated Computational Memory Model

2007-16 Davide Grossi (UU)
Designing Invisible Handcuffs. Formal investigations in Institutions and Organizations for Multi-agent Systems

2007-17 Theodore Charitos (UU)
Reasoning with Dynamic Networks in Practice

2007-18 Bart Orriens (UvT)
On the development an management of adaptive business collaborations

2007-19 David Levy (UM)
Intimate relationships with artificial partners

2007-20 Slinger Jansen (UU)
Customer Configuration Updating in a Software Supply Network

2007-21 Karianne Vermaas (UU)
Fast diffusion and broadening use:
A research on residential adoption and usage of broadband internet in the Netherlands between 2001 and 2005

2007-22 Zlatko Zlatev (UT)
Goal-oriented design of value and process models from patterns

2007-23 Peter Barna (TUE)
Specification of Application Logic in Web Information Systems

2007-24 Georgina Ramirez Camps (CWI)
Structural Features in XML Retrieval

2007-25 Joost Schalken (VU)
Empirical Investigations in Software Process Improvement

====
2008
====

2008-01 Katalin Boer-Sorbn (EUR)
Agent-Based Simulation of Financial Markets: A modular,continuous-time approach

2008-02 Alexei Sharpanskykh (VU)
On Computer-Aided Methods for Modeling and Analysis of Organizations

2008-03 Vera Hollink (UVA)
Optimizing hierarchical menus: a usage-based approach

2008-04 Ander de Keijzer (UT)
Management of Uncertain Data - towards unattended integration

2008-05 Bela Mutschler (UT)
Modeling and simulating causal dependencies on process-aware information systems from a cost perspective

2008-06 Arjen Hommersom (RUN)
On the Application of Formal Methods to Clinical Guidelines, an Artificial Intelligence Perspective

2008-07 Peter van Rosmalen (OU)
Supporting the tutor in the design and support of adaptive e-learning

2008-08 Janneke Bolt (UU)
Bayesian Networks: Aspects of Approximate Inference

2008-09 Christof van Nimwegen (UU)
¿The paradox of the guided user: assistance can be counter-effective

2008-10 Wauter Bosma (UT)
Discourse oriented summarization

2008-11 Vera Kartseva (VU)
Designing Controls for Network Organizations: A Value-Based Approach

2008-12 Jozsef Farkas (RUN)
A Semiotically Oriented Cognitive Model of Knowledge Representation

2008-13 Caterina Carraciolo (UVA)
Topic Driven Access to Scientific Handbooks

2008-14 Arthur van Bunningen (UT)
Context-Aware Querying; Better Answers with Less Effort

2008-15 Martijn van Otterlo (UT)
The Logic of Adaptive Behavior:
Knowledge Representation and Algorithms for the Markov Decision Process Framework in First-Order Domains.

2008-16 Henriette van Vugt (VU)
Embodied agents from a user’s perspective

2008-17 Martin Op ’t Land (TUD)
Applying Architecture and Ontology to the Splitting and Allying of Enterprises

2008-18 Guido de Croon (UM)
Adaptive Active Vision

2008-19 Henning Rode (UT)
From Document to Entity Retrieval: Improving Precision and Performance of Focused Text Search

2008-20 Rex Arendsen (UVA)
Geen bericht, goed bericht.
Een onderzoek naar de effecten van de introductie van elektronisch berichtenverkeer met de overheid op de administratieve lasten van bedrijven

2008-21 Krisztian Balog (UVA)
People Search in the Enterprise

2008-22 Henk Koning (UU)
Communication of IT-Architecture

2008-23 Stefan Visscher (UU)
Bayesian network models for the management of ventilator-associated pneumonia

2008-24 Zharko Aleksovski (VU)
Using background knowledge in ontology matching

2008-25 Geert Jonker (UU)
Efficient and Equitable Exchange in Air Traffic Management Plan Repair using Spender-signed Currency

2008-26 Marijn Huijbregts (UT)
Segmentation, Diarization and Speech Transcription: Surprise Data Unraveled

2008-27 Hubert Vogten (OU)
Design and Implementation Strategies for IMS Learning Design

2008-28 Ildiko Flesch (RUN)
On the Use of Independence Relations in Bayesian Networks

2008-29 Dennis Reidsma (UT)
Annotations and Subjective Machines - Of Annotators, Embodied Agents, Users, and Other Humans

2008-30 Wouter van Atteveldt (VU)
Semantic Network Analysis: Techniques for Extracting, Representing and Querying Media Content

2008-31 Loes Braun (UM)
Pro-Active Medical Information Retrieval

2008-32 Trung H. Bui (UT)
Toward Affective Dialogue Management using Partially Observable Markov Decision Processes

2008-33 Frank Terpstra (UVA)
Scientific Workflow Design; theoretical and practical issues

2008-34 Jeroen de Knijf (UU)
Studies in Frequent Tree Mining

2008-35 Ben Torben Nielsen (UvT)
Dendritic morphologies: function shapes structure

====
2009
====

2009-01 Rasa Jurgelenaite (RUN)
Symmetric Causal Independence Models

2009-02 Willem Robert van Hage (VU)
Evaluating Ontology-Alignment Techniques

2009-03 Hans Stol (UvT)
A Framework for Evidence-based Policy Making Using IT

2009-04 Josephine Nabukenya (RUN)
Improving the Quality of Organisational Policy Making using Collaboration Engineering

2009-05 Sietse Overbeek (RUN)
Bridging Supply and Demand for Knowledge Intensive Tasks - Based on Knowledge, Cognition, and Quality

2009-06 Muhammad Subianto (UU)
Understanding Classification

2009-07 Ronald Poppe (UT)
Discriminative Vision-Based Recovery and Recognition of Human Motion

2009-08 Volker Nannen (VU)
Evolutionary Agent-Based Policy Analysis in Dynamic Environments

2009-09 Benjamin Kanagwa (RUN)
Design, Discovery and Construction of Service-oriented Systems

2009-10 Jan Wielemaker (UVA)
Logic programming for knowledge-intensive interactive applications

2009-11 Alexander Boer (UVA)
Legal Theory, Sources of Law & the Semantic Web

2009-12 Peter Massuthe (TUE, Humboldt-Universitaet zu Berlin)
perating Guidelines for Services

2009-13 Steven de Jong (UM)
Fairness in Multi-Agent Systems

2009-14 Maksym Korotkiy (VU)
From ontology-enabled services to service-enabled ontologies (making ontologies work in e-science with ONTO-SOA)

2009-15 Rinke Hoekstra (UVA)
Ontology Representation - Design Patterns and Ontologies that Make Sense

2009-16 Fritz Reul (UvT)
New Architectures in Computer Chess

2009-17 Laurens van der Maaten (UvT)
Feature Extraction from Visual Data

2009-18 Fabian Groffen (CWI)
Armada, An Evolving Database System

2009-19 Valentin Robu (CWI)
Modeling Preferences, Strategic Reasoning and Collaboration in Agent-Mediated Electronic Markets

2009-20 Bob van der Vecht (UU)
Adjustable Autonomy: Controling Influences on Decision Making

2009-21 Stijn Vanderlooy (UM)
Ranking and Reliable Classification

2009-22 Pavel Serdyukov (UT)
Search For Expertise: Going beyond direct evidence

2009-23 Peter Hofgesang (VU)
Modelling Web Usage in a Changing Environment

2009-24 Annerieke Heuvelink (VUA)
Cognitive Models for Training Simulations

2009-25 Alex van Ballegooij (CWI)
RAM: Array Database Management through Relational Mapping

2009-26 Fernando Koch (UU)
An Agent-Based Model for the Development of Intelligent Mobile Services

2009-27 Christian Glahn (OU)
Contextual Support of social Engagement and Reflection on the Web

2009-28 Sander Evers (UT)
Sensor Data Management with Probabilistic Models

2009-29 Stanislav Pokraev (UT)
Model-Driven Semantic Integration of Service-Oriented Applications

2009-30 Marcin Zukowski (CWI)
Balancing vectorized query execution with bandwidth-optimized storage

2009-31 Sofiya Katrenko (UVA)
A Closer Look at Learning Relations from Text

2009-32 Rik Farenhorst (VU) and Remco de Boer (VU)
Architectural Knowledge Management: Supporting Architects and Auditors

2009-33 Khiet Truong (UT)
How Does Real Affect Affect Affect Recognition In Speech?

2009-34 Inge van de Weerd (UU)
Advancing in Software Product Management: An Incremental Method Engineering Approach

2009-35 Wouter Koelewijn (UL)
Privacy en Politiegegevens; Over geautomatiseerde normatieve informatie-uitwisseling

2009-36 Marco Kalz (OUN)
Placement Support for Learners in Learning Networks

2009-37 Hendrik Drachsler (OUN)
Navigation Support for Learners in Informal Learning Networks

2009-38 Riina Vuorikari (OU)
Tags and self-organisation: a metadata ecology for learning resources in a multilingual context

2009-39 Christian Stahl (TUE, Humboldt-Universitaet zu Berlin)
Service Substitution – A Behavioral Approach Based on Petri Nets

2009-40 Stephan Raaijmakers (UvT)
Multinomial Language Learning: Investigations into the Geometry of Language

2009-41 Igor Berezhnyy (UvT)
Digital Analysis of Paintings

2009-42 Toine Bogers
Recommender Systems for Social Bookmarking

2009-43 Virginia Nunes Leal Franqueira (UT)
Finding Multi-step Attacks in Computer Networks using Heuristic Search and Mobile Ambients

2009-44 Roberto Santana Tapia (UT)
Assessing Business-IT Alignment in Networked Organizations

2009-45 Jilles Vreeken (UU)
Making Pattern Mining Useful

====
2010
====

2010-01 Matthijs van Leeuwen (UU)
Patterns that Matter

2010-02 Ingo Wassink
Work flows in Life Science

	Introduction
	Scope
	Document engineering
	Knowledge engineering
	Software engineering

	Research questions
	Contributions
	Outline

	Related Work
	Document engineering
	Historic overview
	Authoring hypermedia documents
	Document engineering model
	Discussion

	Knowledge engineering
	Issues with multimedia annotation
	Multimedia vocabularies
	Semantic Web
	Discussion

	Software engineering
	Software architectures for document engineering
	Generating multimedia
	Intelligent multimedia systems on the web
	Discussion

	Summary

	Requirements
	Document engineering principles
	Preliminary requirements
	Reuse of authoring and design effort
	Implicit assumption: formatting satisfies constraints of delivery context

	Stylesheet vocabulary
	Representing form conventions
	Implicit assumption: default style rule adapts form while preserving function
	Implicit assumption: formatting always succeeds

	Structured document vocabulary
	Form vocabulary
	Representing form
	Form properties to detect constraint violations

	Practical requirements
	Optimize for reuse
	Web compliant

	Conclusion

	Modeling
	Modeling the document engineering paradigm
	Scope of the model
	Explicit modeling of delivery context
	Explicit parametrization of the style sheet
	Explicit modeling of metadata

	Modeling the stylesheet
	Multiple default style rules
	Detecting constraint violations
	Selecting alternative style rules
	Discussion: soft constraints

	Modeling the structured document
	Explicit representation of media items
	Representing grouping, ordering and priorities

	Modeling the document form
	Three dimensional bounding box
	Discussion: the containment hierarchy

	Summary and Conclusion

	Cuypers document engineering framework
	Overview of the Cuypers framework architecture
	The five steps of the Cuypers transformation chain
	Embedding the Cuypers chain into a Web server
	Discussion: The Cuypers versus the traditional transformation chain
	Summary

	Cuypers vocabularies
	Delivery context
	Presentation Structures
	Hypermedia Formatting Objects
	Style rules
	Summary

	The Cuypers formatter
	Formatting process
	Resolving constraints
	Labeling of constraint variables
	Summary

	Conclusion

	Evaluation scenarios
	Method
	ScalAR
	Aggregation
	Normalization
	Formatting
	Serialization
	Standardization
	Discussion
	Conclusion

	SEMINF
	Aggregation
	Normalization
	Formatting
	Serialization
	Standardization
	Discussion

	DISC
	Aggregation
	Normalization
	Formatting
	Serialization
	Standardization
	Discussion

	Performance analysis
	Automatic adaptation to the delivery context
	Reuse of style
	Comparison of the three scenarios

	Conclusion

	Conclusion
	The research questions revisited
	Lessons learned
	Discussion and remaining challenges

	Hypermedia Formatting Objects
	Style attributes
	Delivery context attributes

	Performance Statistics
	Summary
	References
	About the author
	SIKS Dissertation Series

